BECKHOFF

TX1200

TwinCAT 2 | PLC Library: TcM(C2

"_F—F:E PLC Libraries

2023-07-20 | Version: 1.3

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 7
1.1 Notes on the doCUMENTALION ... e e e e e 7
L o Yo TN T =Y |V USRS POPPPP 8
1.3 Notes on infOrmation SECUNITYcooi i 9

B © 1Y =Y VT 10

B R - 1 L= o[Vo [3 o 11

4 General rules for MC function BIOCKScccccmiiiiii s mnmnn s 14

5 Migration from TCMC to TCIMC2...........coo e ssses s e e e s e s s s s ssmnmn e e e e e e e eessa s smmnmnneneennesas 17

6 Organisation fuNCtion BIOCKS..........coo i 19
Lt Y LN (30 {0 e 11 1SR 19

6.1.1 IMIC POWET ...ttt ettt e ettt e e e ettt e e e e st e e e e e sbb e e e e e e assseeeeessseeeeesansanneeeaansneaeenans 19

6.1.2 Y (O S U=T 1= RSP 20

6.1.3 MC _SEIPOSITION ...t e et e e e e e e e e e naeeeeeeas 21

O S =Y (U =Yg o N oY= =T 0 =Y (=Y SO 23
6.2.1 MC_ReadACtUAIVEIOCILY ..o e 23

6.2.2 MC_ReadACIUAIPOSITIONcciiiiiiiie i e e e eee e es 24

6.2.3 MC_ReadAXiSCOMPONENTSttt e e e e e e e e e e e eeeaaaaaeas 24

6.2.4 MC _REAAAXISETTONeeiiiieee ittt e e e e e e e e e e e e e e e e e eeeeaaaaeeas 25

6.2.5 MC_ReadBoO0IParameEter............uiii i 26

6.2.6 MC_REAAPArAMELE ... a e 27

6.2.7 MC_ReadParameterSet........ccc.uuiiiiiiiiiii e 29

6.2.8 Y (O S U=T=To 1S =1 (1 1 SRR 30

6.2.9 MC_WriteBoOIParameteruuviiiiiiiii i 32
6.2.10 MC_WIiteParameteroooiiiiiiiiiiiie e e 33

0 T o 1¥ o o T o] o] o1 RSO 34
6.3.1 MC _TOUCKHPIODE ...t e e e e e e e e e eaaa e 34

6.3.2 MC_TOUChPIODE V2. ... e 37

6.3.3 Y (O Y o Yo il Iy T [1= RSO PRSOPPRR 40

6.3.4 MC _ADOITHGUET V2 ..ottt e e e e e e e e e e e e e e e s e e e e e aaaaaeeas 41

6.4 External set value GENEIatorooi i 42
6.4.1 MC_ExtSetPointGENENADIE............oooiiiiiiiiiieee e 42

6.4.2 MC_ExtSetPointGenDiSableocuuiiiiiiiii e 43

6.4.3 MC_EXtSetPointGENFEEd...... ... e a e 44

6.5 SPECIal EXIENSIONS ...t e e e e e e e e e e e e a b —aaaaaaaas 45
6.5.1 Y O 01T =T] (=T o] o 1= RO PRPPOPPRR 45

6.5.2 Notes on the MC_POWEISIEPPETcocooiiiiieeeeeeee ettt 46

6.5.3 Y (O @ A=Y ¢ o (=T 1 (=] RSSO PPPRP 51

6.5.4 MC_SEIOVEITIAE ...ttt e e e e e eeeens 52

6.5.5 MC_SetEncoderScalingFactorcuuiiiiiiiiiiie e e 53

6.5.6 MC_PositionCorreCtioNLIMItErcueiiiiiiiiiie e e e 54

6.5.7 MC_ReadDriVEAAAIrESSot e et e e e e e e e e e e e e aaaae s 55

6.5.8 MC_SetAcceptBlockedDriveSignalcooccuiiiiiiiiiie e 56

7 Motion fuNCLioN BIOCKSeeeeeee e s mmn s e 58

TX1200

Version: 1.3 3

Table of contents BEGKHOFF

7.1 Point {0 POINt MOLION ... e e ettt a e e e e e e e e e aaaaaaeees 58
7.1.1 MC _MOVEADSOIULE ...ttt e et e e e e snaeeeeeens 58

71.2 MC_MOVEREIGLIVE ...t 60

71.3 MC_MOVEATAILIVE ... e e ettt e e e e e e e e eeneeeeaeens 62

714 Y L@ AV o Y711V o T ¥ o PR 64

71.5 Notes on MOodUlO POSIHIONINGueeiiiiiieee e e e 66

7.1.6 MC_IMOVEVEIOCITY ...ttt e et e e e et e e e e aanaeeeeeens 72

71.7 MC_MoveContinUOUSADSOIULE........ooiiiiiei e a e 74

7.1.8 MC_MoveContinUOUSREIALIVE..........oooiiiiiiiiiieeece e 76

7.1.9 (O = = 1 OO OPPPURRPOPPRR 78

A% I 1 T |V (O] (oo T USSR 80

A S 0| 11 4 oo 11 (o] o IO SRRSO 82
7.2.1 MC_MOVESUPEIIMPOSEA.ceiiiiiiiieiiiii ettt e e et e e e sneeeeeeeas 82

7.2.2 Application examples for MC_MoveSuperimpoSedceeeveieeeiiiiiiiiiiiiiiieeeeeeee e, 84

7.2.3 MC _ADOMSUPEIPOSITIONeeiiiiiieiie e e e e e e e 87

4% T (0] 011 T PSP PRSPPI 88
7.31 Y (O = (o] 3 LSRR UO OO PPPRP 88

A /=T o 10 E= | N 43T o o SO 91
7.4.1 @ o T RSO PRPSOPPRR 91

R ST 0 £ o7 T o] {1 T USRS 93
7.5.1 Y O 7= [o SO PRPR PRSI 93

7.5.2 MC_GEAIINDYN ...t e ettt e e e e ettt e e e s sbbe e e e e e anbteeeeesanneeaeeeans 95

7.5.3 Y (O Y= 1 @ 11 RSSO 97

754 MC_GearINMUIIMASTEN ... e e e e e e e e e e e e e e e s 98

L -1 T8 0 1= SO 101
TRt B N = 1 (= = - SO ERE 101
8.1.1 Data type AXIS _REF ...ttt e e e 101

8.1.2 Data type NCTOPLC _AXIS REFueiiiiiieie ettt 102

8.1.3 Data type PLCTONC _AXIS_REFueiiiiiiiiiit ettt 102

8.2 Motion fUNCHON DIOCKScooiiiiiiiiei e e e e e e e 103
8.2.1 Data type MC_BUfErMOGE.oiiiiiiiiiice e 103

8.2.2 Data type MC_Dir€CHONceiiiiiiiiee ettt e e e s aee e e s ennneeee s 105

8.2.3 Data type MC_HOMINGMOUEuiiiiiiiiiii et e e e e e e ee s 106

8.24 Data type E_SuperpoSitioNMOUEcooiiiiiiiiieii e 106

8.2.5 Data typeST_SuperpositionOPLioNScoiuiiiiiiiiiiie e 107

8.2.6 Data type E_JOGMOUE........ooiiiiiiiiie ettt 108

8.3 Status and Parameter......... .o i e e e e e e e e e neeaaaaaaeas 108
8.3.1 Data type E_ReaAMOGE..........coooiiiieieeeeeee et 108

8.3.2 Data type ST_AXISSTATUS ...coeeiiiiiieei i 109

8.3.3 Data type MC_AXISParameter........ ..ot 110

8.3.4 Data type ST _PowerStepperStrUCT..........coiiiiiiiiiieiieeee et 111

8.3.5 Data type ST _DrVEAAArESS.t e e e e e e e e e e e neneeeeeeeas 111

8.3.6 Data type ST_AXiSParameterSetoooiiiiiiiiiii e 111

8.3.7 Data type ST_AXISOPMOUEScoiiiiiiiiiieiieeee et 113

8.3.8 Data type E_AxisPositionCorrectionMOdeoeiiiiiiiaiiiiiiee et 113

8.3.9 Data type MC_AXISSTAIES ...t 113

4 Version: 1.3 TX1200

BEGKHOFF Table of contents

S T S o 18 (o o T o] o] oY PRSPPI 114
8.4.1 Data type TRIGGER_REFooiiiiiieiiie et 114

84.2 Data type MC_TouchProbeRecordedData ... 115

8.5 External Set value gENEIATONccoiiiiteeeee et e e e e e e 115
8.5.1 Datentyp E_POSItIONTYPE. ...t 115

£ T =51 11 0] o L= o Yo [=1 1 4 -3 PP 116
1S B B =10 T o Lo oo =T oI PRSP 116

TX1200

Version: 1.3 5

Table of contents BECKHOFF

6 Version: 1.3 TX1200

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwWinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TWinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TX1200 Version: 1.3 7

Foreword BECKHOFF

1.2 For your safety

Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

A DANGER

Hazard with high risk of death or serious injury.

Hazard with medium risk of death or serious injury.

A CAUTION

There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

The environment, equipment, or data may be damaged.

Information on handling the product

d This information includes, for example:
1 recommendations for action, assistance or further information on the product.

Version: 1.3 TX1200

0]

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TX1200 Version: 1.3 9

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview BECKHOFF

2 Overview

The TcMC2 TwinCAT motion control PLC library includes function blocks for programming machine
applications and represents a further development of the TcMC library. TcMC2 is based on the revised

PLCopen specification for motion control function blocks V2.0 (www.PLCopen.org).

PLCopen’

Compatibility

The TcMC2 motion control library contains enhanced and new functions. The function blocks are better
adapted to the requirements of the PLCopen specification and are not compatible with the first version
(TCMC). Users who maintain existing projects are recommended to continue working in these projects with
the classic TcMC. TcMC2 should be used for new projects or for the revision of existing projects.

Main new features

A key feature of TcMC2 compared with TcMC is the so-called buffer mode. Buffer mode enables Move
commands to be queued in order to achieve a continuous positioning without intermediate stops. It enables
transition of two travel commands with a defined velocity at a certain position.

Move commands can be followed by further Move commands during execution. This makes adaptation of
target position or travel speed during the movement much easier.

TwinCAT Version

The TcMC2 library can be used with TwinCAT version 2.10 Build 1340 or higher. With remote programmed
controllers care must be taken that an appropriate version is installed on both the programmer PC and the
control PC. In the case of control systems with the operating system Windows CE, the version of the
installed image is decisive. A Windows CE image with version 3.08 or higher is required here.

10 Version: 1.3 TX1200

http://www.plcopen.org/

BECKHOFF State diagram

3 State diagram

The following state diagram defines the behavior of an axis in situations where several function blocks are
simultaneously active for this axis. The combination of several function blocks is useful for generating more
complex motion profiles or for dealing with exceptional situations during program execution.

TX1200 Version: 1.3 1

State diagram

MC_Camin (Slave)

BECKHOFF

MC_MoveSuperimposed (Slave)

LN

MC_Movefbsolute
MC_MoveRelative
MC_MoveAdditive
MC_MoveSuparimposed
MC_Halt

A

Discrete Motion

12

MC_Camin (Slave)
MC_GearlnPos (Slave)
MC_Gearlnvelo [Slave)

Synchronized Motion

MC_Stop

MC_MovaeAbsclute
MC_MoveRelative

MC_Halt

ME_Moveelocity

T _MoveAbsolute

MC_GearinPos {Slave)
MC_GearlnVelo (Slave)

MC_GearQut
MC_CamOut

MC_MoveVelocity

MC_Camin (Slava)

MC_MoveValocity
MC_MoveSuperimposed

N

Version:

1.3

Continuous Motion
MCMoveRelative
MC_MoveAdditive
MC_Halt
Y MC_Stop
MC_Stop MC_MoveVelacity
MC_MoveContinuous
\ 4
Stopping
'y
MC_MoveAbsolute
MC_MoveRelative -
MC_MoveAdditive MNote 1
MC_MoveModula Note &
»
ErrorStop j
Mote 3 /
l MNote 2
L A 4
. . Maote 5 .
Homing Standstill Disabled
MC_Home
Note 1 From any state in which an error occurs
Note 2 From any state if MC_Power.Enable = FALSE and
the axis has no error

TX1200

BEGKHOFF State diagram

Note 3 MC_Reset and MC_Power.Status = FALSE

Note 4 MC_Reset and MC_Power.Status = TRUE and
MC_Power.Enable = TRUE

Note 5 MC_Power.Status = TRUE and MC_Power.Enable =
TRUE

Note 6 MC_Stop.Done= TRUE and MC_Stop.Execute =
FALSE

As a basic rule, travel commands are processed sequentially. All commands operate within this axis state
diagram.

The axis is always in one of the defined states. Motion commands resulting in a transition change the axis
state and, as a result, the motion profile. The state diagram is an abstraction layer that reflects the real axis
state, comparable to the process image for I/O points. The axis state changes immediately when the
command is issued.

The state diagram initially targets single axes. Multi-axis blocks such as MC_Camin or MC_Gearln influence
the states of several axes, which can always be traced back to individual axis states of the axes involved in
the process. For example, a cam plate master can be in Continous Motion state, while the associated slave
is in Synchronized Motion state. Coupling of a slave has no influence on the state of the master.

The Disabled state is the default state of an axis. In this state can the axis cannot be moved through a
function block. If the MC Power [»_19] block is called with Enable=TRUE, the axis changes to state
Standstill or, on error, ErrorStop. If MC_Power is called with Enable=FALSE, the state changes to Disabled

The purpose of status ErrorStop is to stop the axis and then block further commands, until a reset was
triggered. The Error state transition only refers to actual axis errors, not function block execution errors. Axis
errors may also be indicated at the error output of a function block.

Function blocks that are not listed in the state diagram have no influence on the axis state. (MC_ReadStatus;
MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter; MC_WriteParameter;
MC_WriteBoolParameter; MC _ReadActualPosition and MC_CamTableSelect.)

The Stopping state indicates that the axis is in a stop ramp. Once the axis has stopped the state changes to
StandStill.

Travel commands such as MC_MoveAbsolute that lead out of the Synchronized Motion state are possible
only if they are explicitly permitted in the axis parameters. Uncoupling commands such as MC_GearQOut are
possible independent of that.

TX1200 Version: 1.3 13

General rules for MC function blocks BEGKHOFF

4 General rules for MC function blocks

For all MC function blocks the following rules apply, which ensure defined processing through the PLC
program.

Exclusivity of the outputs

The outputs Busy, Done, Error and CommandAborted are mutually exclusive, i.e. only one of these outputs
can be TRUE at a function block at any one time. When the Execute input becomes TRUE, one of the
outputs must become TRUE. Similarly, only one of the outputs Active, Error, Done and CommandAborted
can be TRUE at any one time.

An exception to this rule is MC Stop [P 80]. MC_Stop sets Done to TRUE as soon as the axis is stopped.
Nevertheless, Busy and Active remain TRUE because the axis is locked. The axis is unlocked and Busy and
Active are set to FALSE only after Execute is set to FALSE.

Initial state

The outputs Done, InGear, InSync, InVelocity, Error, ErrorlD and CommandAborted are reset with a falling
edge at input Execute, if the function block is not active (Busy=FALSE). However, a falling edge at Execute
has no influence on the command execution. Resetting Execute during command execution ensures that
one of the outputs is set at the end of the command for a PLC cycle. Only then are the outputs reset.

If Execute is triggered more than once while a command is executed, the function block will not execute
further commands, without providing any feedback.

Input parameters

The input parameters are read with rising edge at Execute. To change the parameters the command has to
be triggered again once it is completed, or a second instance of the function block must be triggered with
new parameters during command execution.

If an input parameter is not transferred to the function block, the last value transferred to this block remains
valid. A meaningful default value is used for the first call.

Position and Distance

The Position input designates a defined value within a coordinate system. Distance, in contrast, is a relative
measurement, i.e. the distance between two positions. Position and Distance are specified in technical units,
e.g. [mm] or [°], according to the axis scaling.

Dynamic parameters

The dynamic parameters for Move functions are specified in technical units with second as timebase. If an
axis is scaled in millimeters, for example, the following units are used: Velocity [mm/s], Acceleration [mm/s?],
deceleration [mm/s?], jerk [mm/s®].

Error handling

All function blocks have two error outputs for indicating errors during command execution. Error indicates the
error, ErrorID contains a supplementary error number. The outputs Done, InVelocity, InGear and InSync
indicate successful command execution and are not set if Error becomes TRUE.

Errors of different type are signaled at the function block output. The error type is not specified explicitly. It
depends on the unique, system-wide error number.

Error types

» Function block errors only concern the function block, not the axis (e.g. incorrect parameterization).
Function block errors do not have to be reset explicitly. They are reset automatically when the Execute
input is reset.

14 Version: 1.3 TX1200

BEGKHOFF General rules for MC function blocks

» Communication errors (the function block cannot address the axis, for example). Communication errors
usually indicate incorrect configuration or parameterization. A reset is not possible. The function block
can only be triggered again after the configuration was corrected.

* Axis errors (logical NC axis) usually occur during the motion (e.g. following error). They cause the axis
to switch to error status. An axis error must be reset through MC Reset [» 20].

« Drive errors (control device) may result in an axis error, i.e. an error in the logical NC axis. In many

cases can axis errors and drive errors can be reset together through MC Reset. [P 20] Depending on
the drive controller, a separate reset mechanism may be required (e.g. connection of a reset line to the
control device).

Behavior of the Done output

The Done output (or alternatively InVelocity, InGear, InSync etc.) is set when a command was executed
successfully. If several function blocks are used for an axis and the running command is interrupted through
a further block, the Done output for the first block is not set.

Behavior of the CommandAborted output

CommandAborted is set if a command is interrupted through another block.

Behavior of the Busy output

The Busy output indicates that the function block is active. The block can only be triggered with a rising edge
at Execute, if Busy is FALSE. Busy is immediately set with a rising edge at Execute and is only reset when
the command was completed successful or unsuccessfully. As long as Busy is TRUE, the function block
must be called cyclically for the command to be executed.

Behavior of the Active output

If the axis movement is controlled by several functions, the Active output of each block indicates that the axis
executes the command. The status Busy=TRUE and Active=FALSE means that the command is not or no
longer executed.

Enable input and Valid output

In contrast to Execute the Enable input results in an action being executed permanently and repeatedly, as
long as Enable is TRUE. MC ReadStatus [»_30]cyclically updates the status of an axis, for example, as long
as Enable is TRUE. A function block with an Enable input indicates through the Valid output that the data
indicated at the outputs are valid. The data can be updated continuously while Valid is TRUE.

BufferMode

Some function blocks have a BufferMode input for controlling the command flow with several function blocks.
For example, BufferMode can specify that a command interrupts another command (non-queued mode) or
that the following command is only executed after the previous command (queued mode). In queued mode
BufferMode can be used to specify the movement transition from one command to the next. This is referred
to as Blending, which specifies the velocity at the transition point.

A second function block is required to use the buffer mode. It is not possible to trigger a move block with new
parameters while it is active.

In non-queued mode a subsequent command leads to termination of a running command. In this case the
previous command sets the CommandAborted output. In queued mode a subsequent command waits until a
running command is completed. Note here that an endless movement (MC_MoveVelocity) does not permit a
queued subsequent command. Queued commands always lead immediately to an endless movement being
aborted, as in non-queued operation.

Only one command is queued while another command is executed. If more than one command is triggered
during a running command, then the last-started command to be queued is rejected with an error (error
0x4292 Buffer Full). If the last command is started in non-queued mode (Aborting), it becomes active and
interrupts the running and an already queued command.

TX1200 Version: 1.3 15

General rules for MC function blocks BEGKHOFF

BufferModes

« Aborting : Default mode without buffering. The command is executed immediately and interrupts any
other command that may be running.

» Buffered : The command is executed once no other command is running on the axis. The previous
movement continues until it has stopped. The following command is started from standstill.

» BlendingLow: The command is executed once no other command is running on the axis. In contrast to
Buffered the axis does not stop at the previous target, but passes through this position with the lower
velocity of two commands.

« BlendingHigh The command is executed once no other command is running on the axis. In contrast to
Buffered the axis does not stop at the previous target, but passes through this position with the higher
velocity of two commands.

» BlendingNext : The command is executed once no other command is running on the axis. In contrast to
Buffered the axis does not stop at the previous target, but passes through this position with the velocity
of the last command.

« BlendingPrevious: The command is executed once no other command is running on the axis. In
contrast to Buffered the axis does not stop at the previous target, but passes through this position with
the velocity of the first command.

Diagram of the buffer modes [P 103]

Optional blending position

Blending in the different buffer modes takes place in each case at the target position of the currently running
command. In the case of MoveVelocity no target position is defined and in other cases it may be useful to
change the blending position. To do this a BlendingPosition can be defined via the Options input of the
function block (see below), which is then used for the new command. The optional BlendingPosition must be
located before the target position of the previous command, otherwise the new command will be rejected
with an error message (0x4296). If the optional BlendingPosition has already been driven past, then the new
command is instantly implemented and thus behaves like an Aborting command.

Options input

Many function blocks have an Options input with a data structure containing additional, infrequently required
options. For the basic block function these options are often not required, so that the input can remain open.
The user only has to populate the Options data structure in cases where the documentation explicitly refers
to certain options.

Slave axes

Travel commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. Travel commands can be applied to coupled slave axes, if this option was explicitly activated in
the axis parameters. In this case only Buffer-ModeAborting is possible.

16 Version: 1.3 TX1200

BEGKHOFF Migration from TcMC to TcMC2

5 Migration from TcMC to TcMC2

The main differences and modifications between the TcMC motion control library and the extended TcMC2
library are listed here, so that the effort for converting an existing project can be estimated.

Axis data structure

In the past an axis required two data structures for cyclic data exchange with the NC.
NcToPlc_Axis1 AT %I* : NCTOPLC_AXLESTRUCT;

PlcToNc_Axis1 AT %Q* : PLCTONC_AXLESTRUCT;

In most function blocks, including MC MoveAbsolute [P 58], the NCTOPLC_AXLESTRUCT data structure

was transferresd at the Axis input. Certain function blocks, including MC Power [»_19], expected an
additional PLCTONC_AXLESTRUCT structure.

In the TcMC2 environment the axis structure was extended so that all required data are included in a single
structure, which is transferred to each MC function block.

Axis1: AXIS REF [»_101];

The structure contains the cyclic input and output data for the NC plus additional status information. An
existing project generally accesses the content of the NcToPIc structure. The data are also available in the
Axis1 structure and can be used to adapt the application program.

Example:
TcMC : NcToPlc_Axis1.fPosSoll
TcMC2 : Axis1.NcToPlIc.SetPos

Please note that the subelements for the NcToPlIc and. PlcToNc structures now have English names in view
of the international market. For example, the current set position for an axis is no longer referred to as
fPosSoll, but as SetPos.

Function blocks

The input and output configuration of the function blocks has changed slightly compared with TcMC. The
main new feature is support for MC BufferMode [»_103] in Move blocks. In addition, the blocks now also
support a Busy and Active output. These modifications generally only require little migration effort. The
following table contains a list of function blocks with more extensive modifications.

TcMC TcMC2 Note

MC_GearlnFloat MC Gearln [» 93] MC_Gearln now accepts the gear
ratio as a floating point value

MC_NewPos MC_Move... The new BufferMode enables each

MC_NewPosAndVelo Move block to be used to assign a

new target for the axis or change
the velocity. The NewPos function
blocks are therefore no longer
required.

MC_MoveAbsoluteOrRestart MC_Move... MoveAbsoluteOrRestart can be
replaced with two instances of a
Move block (see BufferMode).

MC_Camin MC_Camin The new MC_Camiln function block
MC_CamInExt deals with the function of the
extended MC_CamInExt block.
The input circuit was adapted
accordingly.

TX1200 Version: 1.3 17

Migration from TcMC to TcMC2

BECKHOFF

MC_SetReferenceFlag

MC Home [P 88]

Setting and resetting of the
reference flag (axis is referenced)
can be achieved with the
MC_Home block.

MC_SetPositionOnTheFly

MC SetPosition [P 21]

For actual value setting on the fly,
MC_SetPosition is used in relative
mode (mode=TRUE).

MC_SetActualPosition

MC SetPosition [P 21]

MC_SetActualPosition is replaced
with MC_SetPosition. The new
function block sets the actual and
set positions.

MC_GearOutExt

MC_Move...

Travel commands can be applied
to coupled slave axes, if this option
was explicitly activated in the axis
parameters (from TwinCAT 2.11).
Travel commands can be applied
to coupled slave axes, if this option
was explicitly activated in the axis
parameters. In this case only
Buffer-ModeAborting is possible.

MC_OrientedStop

MC MoveModulo [P 64]

MC_MoveModulo can be started
from standstill or during motion. In
the latter case the block behaves
like MC_OrientedStop

MC_Stop

MC Halt [» 78],
MC Stop [»_80]

MC_Halt executes a normal stop
during motion. In contrast,
MC_Stop locks the axis and
prevents further travel commands.
It should only be used in special
situations.

MC_Home

MC Home [P 88]

MC_Home transfers the
bCalibrationCam signal of the
homing sensor only while the block
is active. To execute homing from
the System Manager with F9, the
signal must be transferred to the
NC by other means, e.g. through
direct allocation:
Axis.PlcToNc.ControlDword.5 :=
HomingSensor;

TcNC library

The previous TcMC library required declarations and functions from the TcNC library, so that this was always
integrated in a project. The new TcMC2 library no longer has this dependency. All required declarations and
functions are now included in TcMC2 library itself, so that the TcNC library is no longer required.
Nevertheless, the TcNC library can still be used for compatibility reasons.

Status information

In existing motion applications axis status information was often determined via a function call
(AxisHasJob(), AxislsMoving() etc.). While these functions can still be used if the TcNC library is integrated,
we now recommended a different approach:

The complete status information for an axis is included in the above-mentioned axis data structure

Axis1:AXIS REF [»_101]. However, these data have to be updated cyclically by calling the function block
MC_ReadStatus or an Axis1.ReadStatus action at the start of the PLC cycle. Current status information is

then available at any point in the program during the PLC cycle.

18

Version: 1.3

TX1200

BEGKHOFF Organisation function blocks

6 Organisation function blocks

6.1 Axis functions

6.1.1 MC_Power

FC_Poweer
—Enakle Status—
—Enahkle_Puositive Busyr—
—Enahble_Megative Activel—
—sverrice Errar—
—Buffertdode ErrarlDi—
—|Ais B

MC_Power activates software enable for an axis. Enable can be activated for both directions of travel or only
one direction. At Status output operational readiness of the axis is indicated.

A velocity override influences the velocity of all travel commands by a specified percentage.

@ [naddition to software enable it may be necessary to activate a hardware enable signal in order to
1 enable a drive. This signal is not influenced by MC_Power and must be activated separately by the
PLC.

Depending on the drive type, Status also signals operational readiness of the drive. Digital drives
provide feedback on operational readiness, while analog drives are unable to indicate their
operational readiness. In the latter case Status only indicated operational readiness of the control
side.

Inputs

VAR_INPUT

Enable : BOOL; (* B *)
Enable Positive : BOOL; (* E *)
Enable Negative : BOOL; (* E *)

Override : LREAL (* V *) := 100.0; (* in percent - Beckhoff proprietary input ¥*)
BufferMode : MC_BufferMode; (* V *)
END VAR

MC BufferMode [» 103]

Enable General software enable for the axis.

Enable_Positive Feed enable in positive direction. Only takes effect if
Enable = TRUE.

Enable_Negative Feed enable in negative direction. Only takes effect if
Enable = TRUE.

Override Velocity override in % for all movement commands.
(0 =Override< 100.0)

BufferMode The BufferMode is evaluated if Enable is reset.
MC_Aborting mode leads to immediate deactivation
of the axis enable. Otherwise, e.g. in MC_Buffered
mode, the function block waits until the axis no longer
executes a command.

General rules for MC function blocks [»_14]

TX1200 Version: 1.3 19

Organisation function blocks

BECKHOFF

Outputs

VAR OUTPUT

Status : BOOL; (* B *)

Busy : BOOL; (* V *)

Active : BOOL; (* V *)

Error : BOOL; (* B *)

ErrorID 3 UDINIe (¥ I =)

END_ VAR

Status Status=TRUE indicates that the axis is ready for
operation.

Busy The Busy output is TRUE, as long as the function
block is called up with Enable = TRUE

Active Active indicates that the command is executed.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

General rules for MC function blocks [P_14]

Inputs/outputs

VAR _IN OUT
Axis : AXIS REF;
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis unambiguously within the system. Among

other parameters it contains the current axis status, including position, velocity or error state.

6.1.2 MC_Reset

MC_Feset
—Execute Congl—
—dxis b Busyr—

Errar—
ErrarlD—

An axis reset is carried out with the function block MC_Reset.

MC_Reset initially resets the NC axis. In many cases this also leads to a reset of the connected drive units.
Depending on the bus system or drive types, in some cases a separate reset may be required for the drive

units.

Inputs

VAR _INPUT
Execute : BOOL;
END VAR

Execute

The command is executed with a rising edge at input
Execute.

Outputs

VAR OUTPUT
Done : BOOL;

20

Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END VAR

Done The Done output becomes TRUE when the reset was
carried out successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new
command. At the same time one of the outputs, Done
or Error, is set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.1.3

MC_SetPosition

MC_SetPosition sets the current axis position to a parameterizable value.

In absolute mode, the actual position is set to the parameterized absolute Position value. In relative mode,

the actual position is offset by the parameterized Position value. In both cases, the set position of the axis is
set such that any following error that may exist is retained. The switch Options.ClearPositionLag can be used
to clear the following error.

Relative mode can be used to change the axis position during the motion.

Inputs

VAR INPUT

Execute : BOOL;

Position : LREAL;

Mode : BOOL; (* RELATIVE=True, ABSOLUTE=False (Default)*)

Options : ST SetPositionOptions;

END VAR

Execute The command is executed with a rising edge at input Execute.

Position Position value to which the axis position is to be set.
In absolute mode the actual position is set to this value, in relative
mode it is shifted by this value.

Mode The axis position is set to an absolute value set if Mode=FALSE.
Otherwise is the axis position is changed relative to the specified
Position value. Relative mode can be used for changing the position of
an axis during motion.

Options The data structure option includes additional, rarely required
parameters. The input can normally remain open.

TX1200 Version: 1.3 21

Organisation function blocks

BECKHOFF

Options.

ClearPositionLag

ClearPositionLag can optionally be
used to set the set and actual
positions to the same value. In this
case the following error is
cancelled.

Options.

SelectEncoderindex

SelectEncoderindex can optionally
be set if an axis with several
encoders is used and the position
of a certain encoder is to be set
(Options.Encoderindex).

Options.

Encoderindex

Encoderlndex indicates the
encoder (0 to n) if
SelectEncoderindex is TRUE.

General rules for MC function blocks [P_14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done The Done output becomes TRUE, once the position
was set successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs, Done or Error, is set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

General rules for MC function blocks [» 14]

Inputs/outputs

VAR _IN OUT
: AXIS REF;

Axis
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

22

Version: 1.3

TX1200

BEGKHOFF Organisation function blocks

6.2 Status and parameter

6.2.1 MC_ReadActualVelocity

MC_ReadActualvelocity
Enable Yalid—
—dxis b Busy—

Error—
ErrarlD—
Actualvelocity—

The actual axis position can be read with the function block MC_ReadActualVelocity.

Inputs

VAR_INPUT
Enable : BOOL;
END VAR

Enable The command is executed as long as Enable is
active.

Outputs

VAR OUTPUT

Valid : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
ActualVelocity : LREAL;
END_ VAR

Valid Indicates that ActualVelocity is valid.

Busy Indicates that the function block is active.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

ActualVelocity Current axis velocity

Inputs/outputs

VAR _IN OUT
Axis : AXIS REF;
END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

TX1200 Version: 1.3 23

Organisation function blocks BEGKHOFF

6.2.2 MC_ReadActualPosition

bMC_FeadaActualPosition
—Enakle Yalid—
—Axis b Busyvl—
Errar—
ErrarlDF—
Positionf—

The current axis position can be read with the function block MC_ActualPosition.

Inputs

VAR _INPUT
Enable : BOOL;
END_ VAR

Enable The command is executed as long as Enable is
active.

Outputs

VAR _OUTPUT

Valid : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Position : LREAL;
END VAR

Valid Indicates that the Position output is valid.
Busy Indicates that the function block is active.
Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Position Current axis position

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.2.3 MC_ReadAxisComponents

bC_ReadAxisComponents
—Execute Cone—
—AxisCamponents & Busyr—
—|Axig B Error—
ErrarlD—

24 Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

The function block MC_ReadAxisComponents is used to read information relating to the subelements

encoder, drive and controller of an axis.

1 In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR _INPUT

Execute : BOOL;

END_VAR

Execute The command is executed with the rising edge.

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END VAR

Done Becomes TRUE, if the parameters were read
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done or Error, is
set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END_ VAR

Axis Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

6.2.4 MC_ReadAXxisError

T FeadsxisError
—Enakle Yalid—
—Axis b Busyl—

Errar—
ErrarlD—
AxisErrorDF—

MC_ReadAxisError reads the axis error of an axis.

TX1200 Version: 1.3 25

Organisation function blocks

BECKHOFF

Inputs

VAR INPUT
Enable : BOOL; (* B *)
END VAR

Enable

The axis error is output at the AxisErrorID output as
long as Enable is active

General rules for MC function blocks [P_14]

Outputs

VAR OUTPUT

Valid : BOOL; (* B *)

Busy : BOOL; (* E *)

Error : BOOL; (* B *)

ErrorID : DWORD; (* B *)

AxisErrorID : DWORD; (* B *)

END VAR

Valid The error signaled at the AxisErrorID output is valid

Busy The Busy output becomes TRUE when the command
is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

AxisErrorID Error number for the axis

General rules for MC function blocks [» 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

6.2.5 MC_ReadBoolParameter

MC_FeadBoolParameter

—Enahle “alid
—Farametertlumber Busy
—Feadkode Errar
—|Axis B ErrarlD

Yalue

The function block MC_ReadBoolParameter is used to read a boolean axis parameter.

1 In this case "axis" refers to the TwinCAT NC axis and not the drive.

26

Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

Inputs

VAR INPUT

Enable : BOOL; (* B *)
ParameterNumber : MC AxisParameter; (* B *)
ReadMode : E_ReadMode (* V *)

END_ VAR

E ReadMode [» 108] MC AxisParameter [» 110]

Enable The command is executed as long as Enable is
active.

ParameterNumber Number [»_110] of the parameter to be read.

ReadMode Read mode [»_108] of the parameter to be read (once
or cyclic).

Outputs

VAR OUTPUT

Valid : BOOL; (* B *)

Busy : BOOL; (* E *)

Error : BOOL; (* B *)

ErrorID : DWORD; (* E *)

Value : BOOL; (* B *)

END_ VAR

Valid The value signaled at the Value output is valid

Busy The Busy output becomes TRUE when the command
is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Value Displays the boolean value that was read.

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis unambiguously within the system. Among

other parameters it contains the current axis status, including position, velocity or error state.

6.2.6 MC_ReadParameter

MZ_ReadParameter
—Enahle Yalid—
—Farametertumber Busyvl—
—Readhode Errar—
—|Ais B ErrarlDF—
“aluel—

The function block MC_ReadParameter is used to read an axis parameter.

TX1200

Version: 1.3 27

Organisation function blocks BEGKHOFF

o
1 In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR INPUT

Enable : BOOL; (* B *)
ParameterNumber : MC AxisParameter; (* B *)
ReadMode : E_ReadMode (* V *)

END VAR

E ReadMode [» 108] MC AxisParameter [» 110]

Enable The command is executed as long as Enable is
active.

ParameterNumber Number [»_110] of the parameter to be read.

ReadMode Read mode [»_108] of the parameter to be read (once
or cyclic).

Outputs

VAR OUTPUT

Valid : BOOL; (* B *)

Busy : BOOL; (* E *)

Error : BOOL; (= 13 =)

ErrorID : DWORD; (* E *)

Value : LREAL; (* B *)

END_ VAR

Valid The value signaled at the Value output is valid

Busy The Busy output becomes TRUE when the command

is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Value Displays the read value.

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END_ VAR

Axis Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

28 Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

6.2.7 MC_ReadParameterSet

MC_ReadParameterSet
—Execute Donef—
—FParameter & Busyr—
—|Axis B Error—

ErrorlD—

The complete parameter set of an axis can be read with the function block MC_ReadParameterSet.

o
1 In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR INPUT

Execute : BOOL;

END VAR

Execute The command is executed with the rising edge.

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done Becomes TRUE, if the parameters were read
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done or Error, is
set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Inputs/outputs

VAR IN OUT

Parameter : ST AxisParameterSet;

Axis : AXIS REF;

END VAR

Parameter Parameter data structure [»_111] into which the
parameters are read

Axis Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

TX1200 Version: 1.3 29

Organisation function blocks BEGKHOFF

6.2.8 MC_ReadStatus

MM _FeadStatus

Enable Walid—
—Axis B Busy—
Error—

Errarld—

Errarstop—
Disabled—
stopping—
StandStill—
Discretebdation—
Continuauskdotian—
synchronizedhdotion—
Haming—
Constantvelocity—
Acceleratingr—
Decelerating—
Status—

MC_ReadStatus determines the current operating state of an axis and signals it at the function block
outputs.

The updated operating state is additionally stored in the Status output data structure and in the Axis.Status
axis data structure. This means the operating state only has to be read once at the start of each PLC cycle
and can then be accessed via Axis.Status.

@ The Axis variable (type AXIS_REF) already includes an instance of the function block
MC_ReadStatus. This means that the operating state of an axis can be updated at the start of a
PLC cycle by calling up Axis.ReadStatus.

Sample:

PROGRAM MAIN

VAR

Axisl : AXIS REF
END VAR

(* call the read status function *)
Axisl.ReadStatus;

Inputs

VAR INPUT
Enable : BOOL;
END VAR

Enable As long as Enable = TRUE, the axis operating state
is updated with each call of the function block.

General rules for MC function blocks [P_14]

Outputs

VAR OUTPUT

Valid : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorId : UDINT;

(* motion control statemachine states: *)
ErrorStop : BOOL;

30 Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

Disabled

Stopping
StandStill
DiscreteMotion
ContinuousMotion
SynchronizedMotion
Homing

(* additional status *)

ConstantVelocity
Accelerating
Decelerating

(* status data structure *)

Status : ST AxisStatus;

END VAR

Valid Indicates that the axis operating state indicated at the
other outputs is valid.

Busy Indicates that the function block is active.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

ErrorStop Axis status according to the PlcOpen state diagram
P a1

Disabled Axis status according to the PlcOpen state diagram
p a1

Stopping Axis status according to the PlcOpen state diagram
P 11]

Standstill Axis status according to the PlcOpen state diagram

a1

DiscreteMotion

Axis status according to the PlcOpen state diagram
»11]

ContinousMotion

Axis status according to the PIcOpen state diagram

P

SynchronizedMotion

Axis status according to the PlcOpen state diagram
P 11]

Homing

Axis status according to the PlcOpen state diagram
1]

ConstantVelocity

The axis is moving with constant velocity

Acceleration

The axis accelerates.

Decelerating

The axis decelerates.

Status

Extended status data structure [»_109] with additional
status information.

General rules for MC function blocks [P 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

TX1200

Version: 1.3 31

Organisation function blocks

BECKHOFF

6.2.9 MC_WriteBoolParameter

MC_WriteBoolParameter
Execute
Farameter~Number
—alue
—|Ais B

Clone
Busy
Errar

ErrarlD

Boolean parameters for the axis can be written with the function block MC_WriteBoolParameter.

1 In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR INPUT

Execute : BOOL;

ParameterNumber : INT;

Value : BOOL;

END_VAR

Execute The command is executed with the rising edge.

ParameterNumber Number [»_110] of the parameter to be written.

Value This BOOL value is written.

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_VAR

Done Becomes TRUE, if the parameters were written
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done or Error, is
set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END_ VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

32

Version: 1.3

TX1200

BECKHOFF

Organisation function blocks

6.2.10 MC_WriteParameter
R WriteParameter
—Execute Cane
—Farametertlumber Busy
—value Errar
—Axis b ErrarlD

Parameters for the axis can be written with the function block MC_WriteParameter.

1 In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR INPUT

Execute : BOOL;

ParameterNumber : INT;

Value : LREAL;

END_VAR

Execute The command is executed with the rising edge.

ParameterNumber Number [»_110] of the parameter to be written.

Value This LREAL value is written.

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_VAR

Done Becomes TRUE, if the parameters were written
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done,
CommandAborted or Error, is set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END_ VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

TX1200

Version: 1.3

33

Organisation function blocks BEGKHOFF

6.3 Touch probe

6.3.1 MC_TouchProbe
MC_TouchProbe
—Execute Donef—
—WindowOnly Busyr—
—FirstFosition CommandAborted—
—LastFosition Error—
—|Axis = ErrarlD—
—Triggerinput = FecordedFosition—

The MC_TouchProbe function block records an axis position at the point in time of a digital signal
(measuring probe function). The position is usually not recorded directly in the PLC environment, but via an
external hardware latch, and is thus very accurate and independent of cycle time. The function block controls
this mechanism and determines the externally recorded position.

Prerequisites

The prerequisite for the position acquisition is suitable encoder hardware that is able to latch the recorded
position. The following equipment is supported, for example: SERCOS drives, the Beckhoff AX2000 with
SERCOS and Lightbus interfaces and the Beckhoff KL5101 Encoder Bus Terminals. The digital trigger
signal is wired into this hardware and, independently of the PLC cycle, triggers the recording of the current
axis position.

These end devices have to be configured to some extent so that a position recording is possible. For details,
read Measuring probe evaluation with AX2xxx-B200 (Lightbus), Measuring probe evaluation with AX2xxx-
B750 (SERCOS), AX5000 Probe Unit and AX5000 Function of a probe unit.

Restrictions

Irrespective of the hardware used, MC_TouchProbe can only record one edge of a probe unit at a time. If
both edges are to be recorded, for example, then the block must be restarted after the first edge with a
changed parameterization. Edges that follow one another in quick succession therefore cannot be recorded.

In order to avoid this problem, you are referred to the extended function block MC TouchProbe V2 [y 37].

@ After a measuring probe cycle has been initiated by a rising edge on the Execute input, this is only
1 terminated if the outputs Done, Error or CommandAborted become TRUE. If the process is to be

interrupted at an intermediate point in time, the function block MC AbortTrigger [»_40] with the

same Triggerlnput [»_114] data structure must be called up. Otherwise no new cycle can be
initiated.

34 Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

Signal curve

PLC Sampling Paints

TRUE EEEEEEE
Execute HEREREE
FALSE -
ALS TTTTTTT] !
TRUE 1= 1
Triggerinput. Signal | | | | | | |
FALSE Tt
TRUE | | | J_l_l_l_
Done | | | | | | |
FALSE L] -
L
TRUE
WindowOnly
FALSE - i
Axis.Position
LastFosition /
RecordedPosgition /
FirztPosition =
- . Lol |
signal not signal
accepted accepted
Timing example TouchProbe
Inputs
VAR INPUT
Execute : BOOL;
WindowOnly : BOOL;
FirstPosition : LREAL;
LastPosition : LREAL;
END VAR
Execute The command is executed with the rising edge and
the external position latch is activated.
WindowOnly If this option is active, only one position inside the

window between FirstPosition and LastPosition is
recorded. Positions outside the window are rejected
and the external position latch is automatically newly
activated. Only if the recorded position lies inside the
window does Done become TRUE.

The recording window can be interpreted in terms of
absolute or modulo values. In this connection the flag
ModuloPositions [»_114] in the structure Triggerinput
[»_114] is to be set accordingly. In the case of
absolute value positions there is exactly one window.
In the case of modulo value positions the window
repeats itself within the modulo cycle defined in the
axis parameters (e.g. 0 to 360 degrees).

FirstPosition

Initial position of the recording window, if
WindowOnly is TRUE. This position can be
interpreted as an absolute or modulo value. In this

TX1200

Version: 1.3 35

Organisation function blocks

BECKHOFF

connection the flag ModuloPositions [»_114] is to be
set appropriately in the structure Triggerinput (see
below).

LastPosition

Final position of the recording window, if WindowOnly
is TRUE. This position can be interpreted as an
absolute or modulo value. In this connection the flag
ModuloPositions [P _114] is to be set appropriately in
the structure Triggerinput (see below).

A. FirstPosition < LastPosition

LastPaosition

FirstPosition

B. FirstPosition > LastPosition

FirsiPasition

LastPosition

irstPosition

LastP osition

examples of windows, where trigger events are accepted (for modulo axes)

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

CommandAborted : BOOL;

Error : BOOL;

ErrorID : UDINT;

RecordedPosition : LREAL;

END_VAR

Done Becomes TRUE, if an axis position has been
recorded successfully. The position is sent to the
output RecordedPosition.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

CommandAborted Becomes TRUE if the process is interrupted by an
external event, e.g. by the call up of MC AbortTrigger
[» 40l

Error Becomes TRUE, as soon as an error occurs.

ErroriD If the error output is set, this parameter supplies the

error number

RecordedPosition

Axis position recorded at the point in time of the
trigger signal

36

Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

Inputs/outputs

VAR_IN_OUT

Axis : AXIS REF;
TriggerInput : TRIGGER REF;
END VAR

Axis Axis data structure [» 101]

Triggerinput TRIGGER. REF [»_114] data structure for describing the
trigger source

6.3.2 MC_TouchProbe_V2

MC_TouchProbe W2 _00

—Execute Donef—
—WindowOnly Busyr—
—FirstFosition CommandAborted—
—LastFosition Error—
—|Axis = ErrarlD—
—Triggerinput = FecordedFosition—

FecordedDatal—

Fig. 1: MC_TouchProbe_V2_ 00

The MC_TouchProbe_V2 function block records an axis position at the point in time of a digital signal
(measuring probe function). The position is usually not recorded directly in the PLC environment, but via an
external hardware latch, and is thus very accurate and independent of cycle time. The function block controls
this mechanism and determines the externally recorded position.

The function of the MC_TouchProbe V2 function block is similar that of the MC_TouchProbe function block.
With several instances, however, it is possible to operate up to two probe units at the same time and in
parallel to record the rising and falling signal edges each with an instance. Furthermore, a continuous mode
is available that evaluates successive signal edges without renewed activation.

Prerequisites

» TwinCAT version 2.11 R2 build 2022 or higher (before that use MC TouchProbe [P_34])

The prerequisite for the position acquisition is suitable encoder hardware that is able to latch the recorded
position. Support is offered for:

+ SERCOS drives
In contrast to MC_TouchProbe, the drive must be configured with an extended interface, in which the
parameters S 0 0405 and S-0 0406 are included in the process image. See also ...

» EtherCAT SoE drives (E.g. AX5000)
In contrast to MC_TouchProbe, the drive must be configured with an extended interface, in which the
parameters S 0 0405 and S-0 0406 are included in the process image. See also ...

» EtherCAT CoE drives
The drive must be configured with the parameter 0x60B9 (touch probe status) in the process image.
+ EL5101, KL5101

Latching of the C track and the digital input is possible. This hardware can only record one signal or
edge at a time. Continuous mode is not supported.

The digital trigger signal is wired into this hardware and, independently of the PLC cycle, triggers the
recording of the current axis position.

These end devices have to be configured to some extent so that a position recording is possible. Beckhoff
EtherCAT drives can be configured with the System Manager. Note that the probe unit has to be configured
with the "Extended NC Probe Unit" interface.

TX1200 Version: 1.3 37

Organisation function blocks BEGKHOFF

@ After a measuring probe cycle has been initiated by a rising edge on the Execute input, this is only
1 terminated if the outputs Done, Error or CommandAborted become TRUE. If the process is to be

interrupted at an intermediate point in time, the function block MC AbortTrigge V2 [» 41] with the

same Triggerlnput [P_114] data structure must be called up. Otherwise no new cycle can be
initiated.

Signal curve

PLC Sampling Paints

TRUE EEEEERE
Execute LEEETTT
FALSE -
ALs RARRRER !
TRUE] et |
Triggerinput. Signal | | | | | | |
FALSE HHHH—
TRLUE | | | J_l_l_l_
Done | | | | | | |
FALSE EEHEREE -t
RUE | L]
WindowOnly
FALSE |
Axis.Position
LastPosition Jﬂfff:!,frf#f
RecordedPosition /
FirstPosition P
- . Lol
signal not signal
accepted accepted
Timing example TouchProbe
Inputs
VAR INPUT
Execute : BOOL;
WindowOnly : BOOL;
FirstPosition : LREAL;
LastPosition : LREAL;
END VAR
Execute The command is executed with the rising edge and
the external position latch is activated.
WindowOnly If this option is active, only one position inside the

window between FirstPosition and LastPosition is
recorded. Positions outside the window are rejected
and the external position latch is automatically newly
activated. Only if the recorded position lies inside the
window does Done become TRUE.

The recording window can be interpreted in terms of
absolute or modulo values. In this connection the flag
ModuloPositions [P_114] in the structure Triggerinput

[»_114] is to be set accordingly. In the case of
absolute value positions there is exactly one window.

38 Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

In the case of modulo value positions the window
repeats itself within the modulo cycle defined in the
axis parameters (e.g. 0 to 360 degrees).

FirstPosition

Initial position of the recording window, if
WindowOnly is TRUE. This position can be
interpreted as an absolute or modulo value. In this
connection the flag ModuloPositions [P_114] is to be
set appropriately in the structure Triggerinput (see
below).

LastPosition

Final position of the recording window, if WindowOnly
is TRUE. This position can be interpreted as an
absolute or modulo value. In this connection the flag
ModuloPositions [P _114] is to be set appropriately in
the structure Triggerinput (see below).

A. FirstPosition < LastPosition

Las:Position

FirstPosition

B. FirstPosition > LastPosition

FirsiPasition

LastPaosition

Last™ositio

irstPosition

LastPosition

examples of windows, where trigger events are accepted (for modulo axes)

Outputs

VAR _OUTPUT

Done : BOOL;
Busy : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;

RecordedPosition : LREAL;

RecordedData : MC_TouchProbeRecordedData;

END_ VAR

Done Becomes TRUE, if an axis position has been
recorded successfully. The position is sent to the
output RecordedPosition.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

CommandAborted Becomes TRUE if the process is interrupted by an
external event, e.g. by the call up of MC AbortTrigger
[» 401

Error Becomes TRUE, as soon as an error occurs.

TX1200

Version: 1.3 39

Organisation function blocks

BECKHOFF

ErroriD

If the error output is set, this parameter supplies the
error number.

RecordedPosition

Axis position recorded at the point in time of the
trigger signal

RecordedData Data structure with complementary information
relating to the logged axis position at the time of the
trigger signal

Inputs/outputs

VAR _IN_OUT

Axis : AXIS REF;
TriggerInput : TRIGGER REF;

END_VAR
Axis Axis data structure [101]
Triggerinput TRIGGER REF [»_114] data structure for describing the

trigger source

6.3.3 MC_AbortTrigger

MC_AbortTrigger
—Execute Doner—
—Axis B Busy—
—Triggeflnput & Error—
ErrorlDi—

The MC_AbortTrigger function block interrupts a measuring probe cycle initiated by MC_TouchProbe.

MC _TouchProbe initiates a measuring probe cycle by activating a position latch in external encoder or drive
hardware. If the process is to be terminated before the trigger signal has activated the position latch,
MC_AbortTrigger can be used for this purpose. If the measuring probe cycle has completed successfully, it

is not necessary to call up this function block.

Inputs

VAR _INPUT

Execute : BOOL;

END VAR

Execute The command is executed with the rising edge and
the external position latch is deactivated.

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done Becomes TRUE, as soon as the measuring probe
cycle has been interrupted successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

40

Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

Inputs/outputs

VAR_IN_OUT

Axis : AXIS REF;
TriggerInput : TRIGGER REF;
END VAR

Axis Axis data structure [» 101]

Triggerinput TRIGGER REF [»_114] data structure for describing the
trigger source. This data structure must be
parameterized before the function block is called for
the first time.

6.3.4 MC_AbortTrigger_V2

MC_AbortTrigger_WE_00
—Exacute Cone—
—Axis Busyr—
—Triggerinput = Error—

ErrarlDf—

The MC_AbortTrigger V2 function block interrupts a measuring probe cycle initiated by
MC_TouchProbe V2. MC _TouchProbe V2 initiates a measuring probe cycle by activating a position latch in
external encoder or drive hardware. If the process is to be terminated before the trigger signal has activated
the position latch, MC_AbortTrigger V2 can be used for this purpose. If the measuring probe cycle has
completed successfully, it is not necessary to call up this function block.

Inputs

VAR INPUT

Execute : BOOL;

END_VAR

Execute The command is executed with the rising edge and
the external position latch is deactivated.

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done Becomes TRUE, as soon as the measuring probe
cycle has been interrupted successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

TriggerInput : TRIGGER REF;

END_VAR

Axis Axis data structure [»_101]

TX1200 Version: 1.3 41

Organisation function blocks BEGKHOFF

Triggerinput TRIGGER REF [»_114] data structure for describing the
trigger source. This data structure must be
parameterized before the function block is called for
the first time.

6.4 External set value generator

6.4.1 MC_ExtSetPointGenEnable
MC_ExtSetPointGenEnable
—Execute Done—
—Fositian Busyr—
—FositionType Error—
—Axis b= ErrorlDF—
Enabled—

The external set value generator of an axis can be switched on with the function block
MC_ExtSetPointGenEnable. The axis then adopts the set value specifications from its cyclic axis interface
[»_102] (Axis.PlcToNc.ExtSetPos, ExtSetVelo, ExtSetAcc and ExtSetDirection).

An external set value generator is usually a PLC block that calculates cyclic set values for an axis and can
therefore substitute the internal set value generator in an NC axis.

See also: MC ExtSetPointGenDisable [P 43] and MC ExtSetPointGenFeed [» 44]

Inputs

VAR INPUT

Execute : BOOL;

Position : LREAL;
PositionType : E PositionType;
END VAR

Execute The command is executed with the rising edge.
Position Position for target position monitoring. Setting of this
position does not mean that the axis moves to this
position, for which only the external set value
generator is responsible. Setting of this position
activates target position monitoring, and the flag Data
type ST AxisStatus [P_109] becomes TRUE, as soon
as this position is reached.

PositionType Position type [»_115] - POSITION TYPE_ABSOLUTE
or POSITION TYPE_RELATIVE

Outputs

VAR OUTPUT

Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Enabled : BOOL;

END VAR

Done Becomes TRUE, if the command was issued
successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

42 Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

Error Becomes TRUE, as soon as an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Enabled Enabled shows the current state of the external set
value generator, independent of the function
execution.

Inputs/outputs

VAR IN_OUT

Axis : AXIS REF;

END VAR

Axis Axis data structure [P_101]

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.4.2 MC_ExtSetPointGenDisable

MC_ExtSetPointGenDisahble

—Execute Done
—Axis & Busy
Errar

ErrarlD

Enahled

The external set value generator of an axis can be switched off with the function block
MC_ExtSetPointGenDisable. The axis then no longer adopts the set value specifications from its cyclic axis
interface [»_102] (Axis.PlcToNc.ExtSetPos, ExtSetVelo, ExtSetAcc and ExtSetDirection)

An external set value generator is usually a PLC block that calculates cyclic set values for an axis and can
therefore substitute the internal set value generator in an NC axis.

See also: MC ExtSetPointGenEnable [P 42] and MC ExtSetPointGenFeed [P 44]

Inputs

VAR INPUT
Execute : BOOL;
END_VAR

Execute

The command is executed with the rising edge.

Outputs

VAR OUTPUT

Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Enabled : BOOL;
END VAR

Done

Becomes TRUE, if the command was executed
successfully.

TX1200

Version: 1.3

43

Organisation function blocks BEGKHOFF

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number

Enabled Enabled shows the current state of the external set
value generator, independent of the function
execution.

Inputs/outputs

VAR _IN OUT

Axis : AXIS REF;

END_VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.4.3 MC_ExtSetPointGenFeed

MC_EstSetPointGenFeed
Position
"elocity
Acceleration
Diirection
—|Axis &

The MC_ExtSetPointGenFeed function is used to feed set values from an external set value generator into

an axis. The function copies the data instantaneously into the cyclic axis interface [P_102] (fExtSetPos,
fExtSetVelo, fExtSetAcc and nExtSetDirection). The function result of MC_ExtSetPointGenFeed is not used
and therefore always FALSE.

An external set value generator is usually a PLC block that calculates cyclic set values for an axis and can
therefore substitute the internal set value generator in an NC axis.

See also: MC ExtSetPointGenEnable [P 42] and MC ExtSetPointGenDisable [» 43]

Inputs

VAR _INPUT

Position : LREAL;

Velocity : LREAL;

Acceleration : LREAL;

Direction : DINT;

END VAR

Position Set position from an external set value generator

Velocity Set velocity from an external set value generator

Acceleration Set acceleration from an external set value generator

Direction Set direction from an external set value generator.
(-1 = negative direction, 0 = standstill, 1 = positive
direction)

44 Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

Inputs/outputs

VAR _IN OUT
Axis : AXIS REF;
END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5 Special extensions

6.5.1 MC_PowerStepper
MC_PowerStepper

—Enakle Status—
—Enahle_Positive Error—
—Enahble_Megative ErrarlDfF—
—werride stalled—
—DestallFParams StallError—
—kL_Status
—kL_Status?
—Axis =

The enables for an axis are set with the function block MC_PowerStepper. An MC_Power block is used
internally for this purpose. The MC_PowerStepper also detects the stall situations that occur in stepper
motors if they are overloaded, and offers suitable counter measures. The status bits of a KL2531 or KL2541
terminal are monitored, and the errors indicated there are reported to the NC.

There is more detailed explanation in the Appendix [P 46].

Inputs

VAR INPUT

Enable : BOOL;
Enable Positive : BOOL;
Enable Negative : BOOL;

Override : LREAL;

DestallParams : ST PowerStepperStruct;

KL Status : USINT;

KL Status2 : UINT;

END_VAR

Enable NC controller enable for the axis.

Enable_Positive NC advance movement enable in positive direction.

Enable_Negative NC advance movement enable in negative direction.

Override Override value in percent (e.g. 68.123%)

DestallParams The functions of the block are enabled here [»_111],
and their working rules are specified.
ST PowerStepperStruct [P 111]

KL_Status The status byte of a terminal of type KL2531 or
KL2541.

KL_Status2 The status word of a terminal of type KL2531 or
KL2541.

TX1200 Version: 1.3 45

Organisation function blocks BEGKHOFF

Outputs

VAR OUTPUT

Status : BOOL;
Error : BOOL;
ErrorID : UDINT;
Stalled : BOOL;
StallError : BOOL;
END VAR

Status Becomes TRUE once all enables were set
successfully.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Stalled no description
StallError no description

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.2 Notes on the MC_PowerStepper

The enables and the override for an axis are set with the MC PowerStepper [P 45] function block. An

MC Power [P_19] block is used internally for this purpose. The MC_PowerStepper also detects the stall
situations that occur in stepper motors if they are overloaded, and offers suitable counter measures. The
status bits of a KL2531 or KL2541 terminal are monitored, and the errors indicated there are reported to the
NC.

Stepper motor and synchronous servo: similarities and differences

Both types of motor use an electromagnetic field and the field of a permanent magnet in order to generate a
driving force through their interaction. Whereas, however, the servomotor makes use of an expensive
system of sensors in order to make specific adjustments to the alignments of the fields (current supplied
dependent on the rotor position), this position-dependent control is not used for the stepper motor. This
makes it possible to save considerable costs. There is, however, a possibility that some external force will
push the motor beyond the position where it is able to generate the maximum torque. Because the
electrically generated magnetic field does not take this into account, the restoring torque generated will fall
as the excursion increases. As a result of this, if the excursion is more than the one half of one pole step
then the corrective torque will change sign, pushing the motor on in the direction of the next pole position.
Depending on the conditions that now apply, the motor may now latch into the new position (which means
that a complete step has been lost), or the whole process may be repeated again here. The latter case is
referred to as stalling, and is most likely to occur when current is fed to the motor at the typical frequency of
the active drive operation.

Example 1: A stepper motor fitted with an encoder is operated with the NC PTP using the parameters typical
for servos.

46 Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

Ju MC_PowerStepper_Encl.scp - TCatScopeView '._ E|[5__<|
Datei Bearbeiten Ansicht Scope Opkionen Hilfe
DS E &7 =mr» QK
1000— 400
A
00— 200
B00—
200—
00—
Blll— 100—
a00— 0— —4}/_/
400— 100
a00—
-200—
200—
100— -300— L
e
[— -400— =
< &
| | | | | | |
0.o0 1.00 2.00 3.00 4100 5.00 .00
IF:::r Help, press F1

bStalled
Setvelo
ActualPos
Actualvelo
SetFos

After about 1.8 seconds, the axis is briefly blocked by an obstacle. Although the axis is then able to move
freely, it is unable to follow the set value of the velocity, but will remain stationary, making considerable noise
but without generating any detectable torque. Only after the profile generator has reached its target does the
total of the set and correction velocities fall. In this example, the motor moves in an irregular manner. Even a
small load torque will, however, prevent this. The only solution here would be to issue an MC Reset [» 20]
and to allow an appropriate settling time to pass. The axis would then have to be restarted by the application.
A variety of state bits in the axis interface would react here. This must be appropriately considered in the
application, as otherwise incorrect reactions may occur in the machine control process.

First corrective step: Controller limitation

If, in the situation described above, the output of the position controller is limited to a sufficiently small value
such as, for instance, 2%, the following pattern results.

TX1200 Version: 1.3 47

Organisation function blocks BEGKHOFF

Ju MC_PowerStepper_Enc?.scp - TCatScopeView |'._||'E|[5__<|
Datei Bearbeiten Ansicht Scope Opkionen Hilfe
DS HE &7 =» +QK
1000— 400
S00— 200
a00—
200—
7oo0—
Bill— 100—
a00— 0—
400— 100
00—
-200—
200—
1 00— -300—
il [[[[[[
0.o0 1.00 2.00 3.00 400 5.00 6.00
IF:::r Help, press F1

Here again, for the remaining period of profile generation, the set speed is too high for the stepper motor to
be able to follow the set movement properly. When the end of the set profile has been reached, the stepper
motor is now brought to its target by the position controller, at a working frequency that it is able to follow
without the ramp. It generates a very high torque as it does this. The time required for this corrective
measure is, however, very long.

Detection and handling of stall situations using an encoder

In order to be able to take appropriate counter-measures, it is first necessary to detect the problem. The
following pattern results if an MC_PowerStepper function block is used. It has a parameter structure of type
ST PowerStepperStruct [P_111], in which PwStDetectMode_Lagging is entered as the DestallDetectMode.
The block uses the following error of the axis as the basis of its decision, making use of the threshold value
and the filter time from the NC axis data for the following error monitoring that is to be deactivated here. In
this example, PwStMode_SetError is entered as the DestallMode. Initially, the only difference from the
following error alarm is the different error code.

48 Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

Ju MC_PowerStepper_Enc3.scp - TCatScopeView |'._||'E|[5__<|
Datei Bearbeiten Ansicht Scope Opkionen Hilfe
D= - = » | QR
1000— 400
00— 200
a00—
200+
To0—
BO0— 100—
a00— 1—
400— 100
00—
-200—
200—
100— -300—
Dt il I I I I I I
n.oo 1.00 2.00 3.00 4.00 5.00 6.00
IF:::r Help, press F1

If PwStMode_UseOverride is entered as the DestallMode, the MC_PowerStepper block uses the override to
halt the profile immediately. Because, however, this halt does not abort the profile, yet does at the same time
prevent the end of the profile from being reached, there is no effect on any status bits. The controller output,
limited here to 2%, brings the axis to within the following error threshold of the current set position of the
profile. Then the override is then returned to the value specified by the application.

TX1200 Version: 1.3 49

Organisation function blocks

BECKHOFF

2u MC_PowerStepper_Encd.scp - TCatScopeView

=B

Datei Bearbeiten Ansicht Scope Opkionen Hilfe
O = & = >
1000— 400
A
00— 200
a00—
200—
00—
Blll— 100—
a00— 0—
400— 100
200—
-200—
200—
100— -300—
L
[— -400—
£ >
| | | | | | |
0.o0 1.00 2.00 a.00 4100 5.00 .00
IF:::r Help, press F1

As a result, a significantly greater proportion of the overall profile is travelled at the specified speed, and the
target position is reached correctly. The status information for the axis is generated correctly.

Combinations of stall detection and handling

The following table illustrates the combinations of the supported modes for stall detection and handling.

PwStMode_SetError

PwStMode_SetErrNonRef

PwStMode UseOverride

PwStDetectMode Encoderless

Comment 1

Comment 2

not suitable

PwStDetectMode Lagging

Comment 3

not useful

Comment 4

Comment 1: Useful for axes without encoder that are not referenced.

Comment 2: Useful for axes without encoder that are referenced with the aid of the terminal's pulse counter
and, for instance, an external sensor.

Comment 3: The resultant behavior largely corresponds to following error monitoring.

Comment 4: Useful for axes with encoder.

50

Version: 1.3

TX1200

BECKHOFF

Organisation function blocks

6.5.3

MC_OverrideFilter

CrerridevalueR aw
LowerOwerrideThreshold
LpperOwerrideThreshold
CwierrideStens
CverrideRecovernyTime

MC_OWERRIDEFILTER

CwerridevialueFiltered
CwerridePercentFiltered
Errar

Errorid

The function block MC_OverrideFilter can be used to convert an unfiltered override value consisting of digits
(e.g. a voltage value of an analog input terminal) into a filtered override value that matches the cyclic axis
interface (PIcToNc) (DWORD in the range 0...1000000). This filtered override is also available in percent
(LREAL in the range 0...100%).

The raw input value is limited to a validity range by LowerOverride Threshold and UpperOverride Threshold,
and implemented as parameterizable steps (resolution) (OverrideSteps). After each override change at the
output of the FB, a minimum recovery time is awaited internally (OverrideRecoveryTime) before a new

override value can be acce

pted. The only exceptions are the override values 0% and 100%, which are

always implemented without delay for safety reasons.

@ Due to the gradation of the override output value (OverrideValueFiltered), the filtered override may
become zero for very small override input values (OverrideValueRaw). A zero override leads to
1 standstill of the axis. If total standstill is undesired, OverrideValueRaw should not fall below the
smallest level.
Inputs
VAR _INPUT
OverrideValueRaw : DINT;
LowerOverrideThreshold : DINT := 0; (* 0...32767 digits *)
UpperOverrideThreshold : DINT := 32767; (* 0...32767 digits *)
OverrideSteps : UDINT := 200; (* 200 steps=> 0.5 percent¥*)
OverrideRecoveryTime : TIME := T#150ms; (* 150 ms *)

END VAR

OverrideValueRaw

Raw, unfiltered override value (e.g. a voltage value of
an analog input terminal).

LowerOverrideThreshold

The lower threshold for the raw override value.

UpperOverrideThreshold

The upper threshold for the raw override value.

OverrideSteps

The specified steps (override resolution).

OverrideRecoveryTime

Minimum recovery time, after which a new filtered
override value is placed on the output. The override
values 0% and 100% are implemented without delay.

Outputs

VAR OUTPUT
OverrideValueFiltered
OverridePercentFiltered :
Error
ErrorId
END VAR

: DWORD; (* 0...1000000 counts *)
LREAL; (* 0...100 & *)

: BOOL;

: UDINT;

OverrideValueFiltered

The filtered override value in digits (the data type
matches the override in the cyclic axis interface 0 to
1000000).

OverridePercentFiltered

The filtered override value in percent (0..100%).

Error

Becomes TRUE if an error occurs.

TX1200

Version: 1.3 51

Organisation function blocks

BECKHOFF

ErroriD

If the error output is set, this parameter supplies the
error number.

Possible error number

Possible causes

MC_ERROR_PARAMETER_NOT_CORRECT

* OverrideSteps <=1

* LowerOverrideThreshold >= UpperOverride-
Threshold

6.5.4 MC_SetOverride

MC_SetCverride
—Enahle Enabled—
—velFactar Busyr—
—AccFactor Error—
—JerkFactar Errorld—
—Ais =

The override for an axis can be specified with the function block MC_SetOverride.

Inputs

VAR INPUT

Enable : BOOL; (* B *)

VelFactor : LREAL (* B *) := 1.0; (*1.0 = 100%%)

AccFactor : LREAL (* E *) := 1.0; (*1.0 = 100%*) (* not supported *)

JerkFactor : LREAL (* E *) := 1.0; (*1.0 = 100%*) (* not supported *)

END VAR

Enable The command is executed as long as Enable is
active.

VelFactor Velocity override factor

AccFactor not supported

JerkFactor not supported

Outputs

VAR OUTPUT

Enabled : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

END VAR

Enabled The parameterized override is set

Busy The Busy output becomes TRUE when the command
is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END VAR

52 Version: 1.3 TX1200

BECKH

OFF

Organisation function blocks

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.5

MC_SetEncoderScalingFactor

MC_SetEncoderScalingFactor changes the scaling factor for the active encoder of an axis, either at standstill
or in motion.

The change can be absolute or relative. This mode is only suitable at standstill, since in absolute mode the
change in scaling factor leads to a position discontinuity. In relative mode an internal position offset is
adapted at the same time such that no discontinuity occurs. Please note that intervention during motion
changes the actual velocity of the axis while the real velocity remains constant. Therefore only small
changes can be implemented during the motion.

Inputs

VAR INPUT

Execute : BOOL;

ScalingFactor : LREAL;

Mode : E_SetScalingFactorMode;

Options : ST SetEncoderScalingOptions;

END VAR

Execute The command is executed with a rising edge at input Execute.

ScalingFactor Scaling factor of the active encoder of an axis. The scaling factor is
specified in physical positioning units [u] divided by the number of
encoder increments.

Mode The scaling factor can be set in absolute or relative mode
(ENCODERSCALINGMODE_ABSOLUTE,
ENCODERSCALINGMODE_RELATIVE).

In absolute mode counting starts at the origin of the axis coordinate
system, resulting in a position discontinuity if the scaling factor is
changed. In relative mode the actual position of the axis does not
change. This mode is therefore also suitable for changes during motion.

Options The data structure option includes additional, rarely required
parameters. The input can normally remain open.

Options. SelectEncoderindex SelectEncoderindex can optionally
be set if an axis with several
encoders is used and the position
of a certain encoder is to be set
(Options.Encoderindex).

Options. Encoderindex Encoderlindex indicates the
encoder (0 to n) if
SelectEncoderindex is TRUE.

General rules for MC function blocks [» 14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Error : BOOL;

ErrorID : UDINT;

Options : ST SetPositionOptions;

END VAR

Done The Done output becomes TRUE, once the position

was set successfully.

TX1200

Version: 1.3 53

Organisation function blocks BEGKHOFF

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE

again, the function block is ready for a new job. At the
same time one of the outputs, Done or Error, is set.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number:

General rules for MC function blocks [» 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.6 MC_PositionCorrectionLimiter
FMC_FositionCorrectionLimiter

—Enahle Busyl—
—PuositionCorrection'alue Errar—
—Correctionbode ErrarlD—
—Acceleration Limiting—
—CorrectionLength

—Axis b

The function block MC_PositionCorrectionLimiter writes a correction value (PositionCorrectionValue) at the
actual position of an axis. Depending on the correction mode the data are fed either directly or filtered to the
axis.

VAR_INPUT

VAR _INPUT

Enable : BOOL;

PositionCorrectionValue : LREAL;

CorrectionMode : E AxisPositionCorrectionMode;

Acceleration : LREAL;

CorrectionLenght : LREAL;

END VAR

Enable The continuous writing of the
PositionCorrectionValue is activated by this input. It
must be TRUE as long as new correction values are
to be accepted.

PositionCorrectionValue The correction value that is to be added to the actual
value of the axis.

CorrectionMode Depending on this mode the PositionCorrectionValue
is written either directly or filtered. For a detailed
description see E_AxisPositionCorrectionMode
1131

54 Version: 1.3 TX1200

BECKHOFF

Organisation function blocks

Acceleration

Depending on the CorrectionMode the maximum
acceleration to reach the new correction value is
specified here. In the case of
PositionCorrectionMode Fast [P_113] this value has a
direct effect on the position delta by PLC-tick.

Max. permissible correction value position delta =
acceleration * (PLC cycle time)*2.

The position correction is not limited if acceleration is
parameterized to 0.0.

CorrectionLength

If the CorrectionMode corresponds to
PositionCorrectionMode FullLength [P_113], this
parameter becomes active. A change in the
PositonCorrectionValue is distributed over this
correction length.

VAR_IN_OUT

VAR _IN OUT

Axis : AXIS REF;

END VAR

Axis AXIS REF [»_101] axis data structure

VAR_OUTPUT

VAR OUTPUT

Busy : LREAL;

Error : BOOL;

ErrorId : UDINT;

Limiting : BOOL;

ND VAR

Busy Goes TRUE as soon as the function block is active
and FALSE when it returns to the original state.

Error Becomes TRUE, as soon as an error occurs.

Errorid If the error output is set, this parameter supplies the
error number.

Limiting Goes TRUE if the demanded
PositionCorrectionValue has not yet been completely
accepted.

o

The Position Correction parameter in the System Manager must be enabled in order to use this
1 function block successfully.

6.5.7 MC_ReadDriveAddress

MC_ReadDrivesddress

—Execute Daone
—hxis b Busy
Errar

ErrarlD
Drivesddress

MC_ReadDriveAddress reads the ADS access data for a drive device connected to the axis. This
information is required for accessing the device, e.g. for special parameterization.

TX1200

Version: 1.3 55

Organisation function blocks BEGKHOFF

Inputs

VAR INPUT

Execute : BOOL; (* B *)

END VAR

Execute The command is executed with a rising edge at input
Execute.

General rules for MC function blocks [P_14]

Outputs

VAR OUTPUT

Done : BOOL; (= 1B =)

Busy : BOOL; (* E *)

Error : BOOL; (= 1B =)

ErrorID : DWORD; (* B *)

DriveAddress : ST DriveAddress; (* B *)

END VAR

Done Becomes TRUE if the command was executed error-
free.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

DriveAddress ADS access data [>_111] of a drive unit connected to
the axis.

General rules for MC function blocks [» 14]

Inputs/outputs

VAR IN OUT

Axis : AXIS REF;

END VAR

Axis Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.8 MC_SetAcceptBlockedDriveSignal

MC_SetAcceptBlockedDriveSignal
—Axis MC_SetAcceptBlockedDriveSignal F—
—Enable

There are situations in which a drive no longer follows the NC setpoints, e.g. if an axis reaches a limit switch.
The NC interprets such a situation as an error, and the drive is stopped. In some cases the user may want to
provoke such a situation deliberately, e.g. in order to move to a limit switch for a reference run. The function
MC_SetAcceptBlockedDriveSignal can be used to temporarily prevent the NC axis generating an error in
situations where the drive no longer follows the NC setpoints.

+ See also bit 8 of the ControlDWord in AXIS_REF.

56 Version: 1.3 TX1200

BEGKHOFF Organisation function blocks

* A SERCOS/SoE drive reports "Drive follows the command values" via status bit 3 of drive status word
S-0-0135.

+ A CANopen/CoE drive reports "Drive follows the command values" via status bit 12 of object 6041h.
FUNCTION MC_SetAcceptBlockedDriveSignal: BOOL

Inputs

VAR INPUT
Enable : BOOL;
END VAR

Enable: NC controller enable for the axis.

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis: Axis data structure that unambiguously addresses an axis in the system. Among other parameters it
contains the current axis status, including position, velocity or error state. (Type: AXIS REF [»_101])

TX1200 Version: 1.3 57

BECKHOFF

Motion function blocks

7 Motion function blocks

7.1 Point to point motion

711 MC_MoveAbsolute
MC_Mowveshbsolute

—Execute Donef—
—Fosition Busyr—
—elocity Activer—
—Acceleration CommandAborted—
—Deceleration Errar—
—Jerk ErrarlD—
—Buffertdode
—Options
—|Axis B

MC_MoveAbsolute starts positioning to an absolute target position and monitors the axis movement over the
whole travel path. The Done output is set once the target position has been reached. Otherwise the
CommandAborted or, on error, the Error output is set.

MC_MoveAbsolute is predominantly used for linear axis systems. For modulo axes the position is not
interpreted as a modulo position, but as an absolute position in continuous absolute coordinate system.

Alternatively, the MC MoveModulo [»_64] block can be used for modulo positioning.

Travel commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. Travel commands can be applied to coupled slave axes, if this option was explicitly activated in
the axis parameters. In this case only Buffer-ModeAborting is possible.

Inputs

VAR _INPUT

Execute : BOOL;
Position : LREAL;
Velocity : LREAL;

Acceleration : LREAL;
Deceleration : LREAL;

Jerk : LREAL;

BufferMode : MC BufferMode;

Options : ST MoveOptions;

END VAR

Execute The command is executed with a rising edge at input
Execute.

Position Absolute target position to be used for positioning.

Velocity Maximum travel velocity (>0).

Acceleration

Acceleration (20). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode The BufferMode [»_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command

58 Version: 1.3 TX1200

BECKHOFF

Motion function blocks

becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

If the command is applied to a coupled slave axis
used, the only available buffer mode is Aborting.

A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options

The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [P 14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;

CommandAborted : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed If the
command was queued, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [» 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

TX1200

Version: 1.3 59

Motion function blocks

BECKHOFF

7.1.2 MC_MoveRelative
bMC_bowveRelative

—Execute Cane

—Distance Busy

—welocity Active

—Acceleration Commandiboned

—Deceleration Errar

—{Jerk
Buffertdode
Options
—Axis B

EtrarlD

MC_MoveRelative starts a relative positioning procedure based on the current set position and monitors the
axis movement over the whole travel path. The Done output is set once the target position has been
reached. Otherwise, the output CommandAborted or, in case of an error, the output Error is set.

@ Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the
axis parameters. A motion command such as MC_MoveAbsolute then automatically leads to

1 decoupling of the axis, after which the command is executed. In this case the only available buffer
mode is Aborting.

Inputs

VAR INPUT

Execute : BOOL;

Distance : LREAL;

Velocity : LREAL;

Acceleration : LREAL;

Deceleration : LREAL;

Jerk : LREAL;

BufferMode : MC BufferMode;

Options : ST MoveOptions;

END_ VAR

Execute The command is executed with a rising edge at
Execute input.

Distance Relative distance to be used for positioning.

Velocity Maximum travel velocity (>0).

Acceleration

Acceleration (20). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk

Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode

The BufferMode [P_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
transition condition from the current to the next
command is also defined by the BufferMode.

If the command is applied to a coupled slave axis,
only the buffer mode Aborting is possible.

To use the BufferMode, a second function block is
always necessary. It is not possible to trigger a move
function block with new parameters while it is active.

60

Version: 1.3

TX1200

BECKHOFF

Motion function blocks

Options

The data structure Options includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [P 14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;

CommandAborted : BOOL;

Error : BOOL;

ErrorID : UDINT;

END VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [P 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

TX1200

Version: 1.3 61

Motion function blocks

BECKHOFF

71.3

MC_MoveAdditive

Execute
Distance
elocity

—Jerk
Bufferhdode
Options
—|Axis b

Acceleration
Deceleration

MC_bovesdditive

Daone
Busy
Active

Commandahored

Error
ErrarlD

MC_MoveAdditive starts relative positioning procedure based on the last target position instruction,
irrespective of whether this was reached. The Done output is set once the target position has been reached.
Otherwise the CommandAborted or, on error, the Error output is set.

If no last target position is known or the axis is moving continuously, the movement is executed based on the

current set position for the axis.

Inputs

VAR INPUT

Execute : BOOL;

Distance : LREAL;

Velocity : LREAL;

Acceleration : LREAL;

Deceleration : LREAL;

Jerk : LREAL;

BufferMode : MC BufferMode;

Options : ST MoveOptions;

END VAR

Execute The command is executed with a rising edge at input
Execute.

Distance Relative distance to be used for positioning.

Velocity Maximum travel velocity (>0).

Acceleration

Acceleration (=0). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk

Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode

The BufferMode [P_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options

The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [P 14]

62

Version: 1.3

TX1200

BECKHOFF

Motion function blocks

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;

CommandAborted : BOOL;

Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed If the
command was queued, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [»_14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

1 MC_MoveAdditive is not implemented for fast/slow axes.

TX1200

Version: 1.3 63

Motion function blocks BEGKHOFF

71.4 MC_MoveModulo

FMC_Movebdodulo
—Execute Done—
—Faositian Busyw—
—elocity Activer—
—Acceleration CommandAboted—
—Deceleration Errar—
—Jerk ErrorD—
—Direction
—Buftertdode
—Options
—Axis B

The function block MC_MoveModulo carries out a positioning referenced to the modulo position of an axis.
The basis for a modulo rotation is the adjustable axis parameter modulo factor (e.g. 360°). A distinction is
made between three possible start types, depending on the Direction input.

» Positioning in positive direction
» Positioning in negative direction
» Positioning along shortest path

@ Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the
axis parameters. A motion command such as MC_MoveModulo then automatically leads to
decoupling of the axis, after which the command is executed. In this case the only available buffer
mode is Aborting.

Starting an axis from standstill

If an axis is started from standstill with MC_MoveModulo , it is possible to specify positions greater than or
equal to 360°, in order to perform additional full turns. The same applies to a start with the
BufferModeMC _Buffered.

Starting an axis during motion

If an axis is already in motion, certain special considerations apply. The direction of movement cannot be
reversed by MC_MoveModulo, i.e. the target can only be reached in the current direction. The user is not
able to specify the number of additional turns. The system automatically calculates how the axis can be
moved to the target position on the shortest possible path.

The error output must be analyzed, because under certain conditions an oriented stop is not possible. For
example, a standard stop may have been triggered just before, or an oriented stop would cause an active
software limit switch to be exceeded. For all fault conditions, the axis is stopped safely, but it may
subsequently not be at the required oriented position.

Special cases

Special attention must be paid to the behavior when one or more complete modulo rotations are requested.
If the axis is located at an exact set position, such as 90 degrees, and if positioning to 90 degrees is
required, no movement is carried out. If required to turn 450 degrees in a positive direction, it will perform
just one rotation. The behavior can be different following an axis reset, because the reset will cause the
current actual position to be adopted as the set position. The axis will then no longer be exactly at 90
degrees, but will be a little under or over. These cases will give rise either to a minimum positioning to 90
degrees, or on the other hand a complete rotation. For further details please refer to the Commentary [P _66]
section.

Depending on the particular case, it may be more effective for complete modulo rotations to calculate the
desired target position on the basis of the current absolute position, and then to position using the function
block MC MoveAbsolute [» 58].

64 Version: 1.3 TX1200

BECKHOFF

Motion function blocks

@® Modulo positioning and absolute positioning are available for all axes, irrespective of the Modulo
setting in the TwinCAT System Manager. For each axis, the current absolute position SetPos can

be read from the cyclic axis interface data type NCTOPLC AXIS REF [»_102].

Important: Further information on modulo movements [P _66]

Inputs

VAR INPUT

Execute : BOOL;

Position : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;

Direction : MC Direction;
BufferMode : MC_BufferMode;
Options : ST MoveOptions;
END VAR

MC BufferMode [»_103] MC Direction [P_105]

Execute The command is executed with a rising edge at
Execute input.

Position Modulo target position to be used for positioning.
If the axis is started from standstill, positions greater
than 360° result in additional turns. Negative
positions are not permitted.

Velocity Maximum travel velocity (>0).

Acceleration

Acceleration (20). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk

Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

Direction

Positive or negative direction of travel of type

MC Direction [»_105].

If the axis is started during a motion, the direction
may not be reversed.

BufferMode

The BufferMode [P_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
transition condition from the current to the next
command is also defined by the BufferMode.

To use the BufferMode, a second function block is
always necessary. It is not possible to trigger a move
function block with new parameters while it is active.

Options

The data structure Options includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [P 14]

Outputs

VAR OUTPUT
Done : BOOL;
Busy : BOOL;

TX1200

Version: 1.3 65

Motion function blocks

BECKHOFF

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR

Done

The Done output becomes TRUE once the target
position was reached.

Busy

The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active

Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted

Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [P_14]

Inputs/outputs

VAR _IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [»_101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis unambiguously within the system. Among

other parameters it contains the current axis status, including position, velocity or error state.

71.5 Notes on modulo positioning

Modulo positioning (MC_MoveModulo [P _64]) is possible irrespective of the axis type. If may be used both for
linear or rotary axes, because TwinCAT makes no distinction between these types. A modulo axis has a
consecutive absolute position in the range £~. The modulo position of the axis is simply a piece of additional
information about the absolute axis position. Modulo positioning represents the required target position in a
different way. Unlike absolute positioning, where the user specifies the target unambiguously, modulo
positioning has potential pitfalls, because the required target position may be interpreted in different ways.

Settings in the TwinCAT System Manager

Modulo positioning refers to a modulo period that can be set in the TwinCAT System Manager. The
examples on this page assume a rotary axis with a modulo period of 360 degrees.

66

Version: 1.3 TX1200

BEGKHOFF Motion function blocks

! Unkenannt - TwinTAT System Manager E@
File Edit Actions View Options Help
D SR 2200 d | ®eevFd ;e @B Qe
Bl SvSTEM - Configuration = +
F_ . Global i F
! NC - Configuration | General I NC Enu:uderl =l | Incremerital | Onllne| [
&-[B1 NC-Task1 SAF ENCODER-Mode E POSVELOD i
MC-Task1 SVE - Invert Encoder Counting Direction B FALSE 5
Tacl 1. 1 Scaling Factar F 0.000 */INC
= NC-Task 1-Image Position Bias F 0.0 :
[Tables Modulo Factor (e.g. 360.0°) F B
] Svae Aes E_ - Tolerance ndcwf Start F 0.
: s 1 EMABLE: Min Soft Position Limit B FALSE
E'H' PRI - Software Position Limit Min F 00
8, Axisl_Enc ENABLE: Max Soft Position Limit B FALSE
H Byie - Software Position Limit Max F 00
=l Az 1_Drive Fiter Time for Actual Posttion (P-T1) F 0.0 s
ool Axisl il - Fitter Time for Actual Velocity (P-T1) F 0.0 s -
AR] i [F 1| 1] [3
Ready Local 17216.5189.11) Stopped

The modulo tolerance window defines a position window around the current modulo set position of the axis.
The window width is twice the specified value (set position * tolerance value). A detailed description of the
tolerance window is provided below.

Special features of axis resets

Axis positioning always refers to the set position. The set position of an axis is normally the target position of
the last travel command. An axis reset (MC Reset [P 20], controller activation with MC Power [»_19]) can lead
to a set position that is different from that expected by the user, because in this case the current actual
position is used as the set position. The axis reset will reset any following error that may have occurred. If
this possibility is not considered, subsequent positioning may lead to unexpected behavior.

Example: An axis is positioned to 90°, with the result that subsequently the set position of the axis is exactly
90°. A further modulo travel command to 450° in positive direction results in a full turn, with the subsequent
modulo position of the axis of once again being exactly 90°. If an axis reset is carried out at this stage, the
set position may happen to be somewhat smaller or greater. The new value depends on the actual value of
the axis at the time of the reset. However, the next travel command will lead to different results. If the set
position is slightly less than 90°, a new travel command to 90° in positive direction only leads to minimum
motion. The deviation created by the reset is compensated, and the subsequent set position is once again
exactly 90°. However, if the set position after the axis reset is slightly more than 90°, the same travel
command leads to a full turn to reach the exact set position of 90°. This problem occurs if complete turns by
360° or multiples of 360° were initiated. For positioning to an angle that is significantly different from the
current modulo position, the travel command is unambiguous.

To solve the problem, a modulo tolerance window can be parameterized in the TwinCAT system manager.
This ensures that small deviations from the position that are within the window do not lead to different axis
behavior. If, for example, a window of 1° is parameterized, in the case described above the axis will behave
identically, as long the set position is between 89° and 91°. If the set position exceeds 90° by less than 1°,
the axis is re-positioned in positive direction at a modulo start. In both cases, a target position of 90°
therefore leads to minimum movement to exactly 90°. A target position of 450° leads to a full turn in both
cases.

TX1200 Version: 1.3 67

Motion function blocks BEGKHOFF

i m‘
TDIEI",ant'.e Toler
Winhow YWin
1807 7 0* 1e0° ! 3 | o
270° " 2700
o0° | a0®
. i
Ieﬁanca Tolerance
nidow i Window
180* o* 1Boe i
\\“-—____ﬁ-"’
270 270"

Figure: Effect of the modulo tolerance window - modulo target position 90° in positive direction

For values that are within the window range, the modulo tolerance window can therefore lead to movements
against the specified direction. For small windows this is usually not a problem, because system deviations
between set and actual position are compensated in both directions. This means that the tolerance window
may also be used for axes that may only be moved in one direction due to their construction.

Modulo positioning by less than one turn

Modulo positioning from a starting position to a non-identical target position is unambiguous and requires no
special consideration. A modulo target position in the range [0 <; position < 360] reaches the required target
in less than one whole turn. No motion occurs if target position and starting position are identical. Target
positions of more than 360 degrees lead to one or more full turns before the axis travels to the required
target position.

For a movement from 270° to 0°, a modulo target position of 0° (not 360°) should therefore be specified,
because 360 is outside the basic range and would lead to an additional turn.

For modulo positioning, a distinction is made between three different directions, i.e. positive direction,
negative direction and along shortest path (MC Direction [»_105]). For positioning along the shortest path,
target positions of more than 360° are not sensible, because the movement towards the target is always
direct. In contrast to positive or negative direction, it is therefore not possible to carry out several turns before
the axis moves to the target.

Important: For modulo positioning with start type along shortest path , only modulo target positions within
the basic period (e.g. less than 360°) are permitted, otherwise an error is returned.

The following table shows some positioning examples:

68 Version: 1.3 TX1200

BEGKHOFF Motion function blocks

Direction Absolute start Modulo target Relative travel Absolute end Modulo end
(modulo start position position path position position

type)

positive 90.00 0.00 270.00 360.00 0.00
direction

positive 90.00 360.00 630.00 720.00 0.00
direction

positive 90.00 720.00 990.00 1080.00 0.00
direction

negative 90.00 0.00 -90.00 0.00 0.00
direction

negative 90.00 360.00 -450.00 -360.00 0.00
direction

negative 90.00 720.00 -810.00 -720.00 0.00
direction

along shortest 90.00 0.00 -90.00 0.00 0.00
path

Modulo positioning with full turns

In principle, modulo positioning by one or full turns are no different than positioning to an angle that differs
from the starting position. No motion occurs if target position and starting position are identical. For a full
turn, 360° has to be added to the starting position.

The reset behavior described above shows that positioning with full turns requires particular attention. The
following table shows positioning examples for a starting position of approximately 90°. The modulo
tolerance window (TW) is set to 1°. Special cases for which the starting position is outside this window are
identified.

Direction Absolute start Modulo target Relative Absolute end Modulo end Note
(modulo start position position travel path position position

type)

positive 90.00 90.00 0.00 90.00 90.00

direction

positive 90.90 90.00 -0.90 90.00 90.00

direction

positive 91.10 90.00 358.90 450.00 90.00 outside TF
direction

positive 89.10 90.00 0.90 90.00 90.00

direction

positive 88.90 90.00 1.10 90.00 90.00 outside TF
direction

positive 90.00 450.00 360.00 450.00 90.00

direction

positive 90.90 450.00 359.10 450.00 90.00

direction

positive 91.10 450.00 718.90 810.00 90.00 outside TF
direction

positive 89.10 450.00 360.90 450.00 90.00

direction

positive 88.90 450.00 361.10 450.00 90.00 outside TF
direction

positive 90.00 810.00 720.00 810.00 90.00

direction

TX1200 Version: 1.3 69

Motion function blocks BEGKHOFF

positive 90.90 810.00 719.10 810.00 90.00

direction

positive 91.10 810.00 1078.90 1170.00 90.00 outside TF
direction

positive 89.10 810.00 720.90 810.00 90.00

direction

positive 88.90 810.00 721.10 810.00 90.00 outside TF
direction

negative 90.00 90.00 0.00 90.00 90.00

direction

negative 90.90 90.00 -0.90 90.00 90.00

direction

negative 91.10 90.00 -1.10 90.00 90.00 outside TF
direction

negative 89.10 90.00 0.90 90.00 90.00

direction

negative 88.90 90.00 -358.90 -270.00 90.00 outside TF
direction

negative 90.00 450.00 -360.00 -270.00 90.00

direction

negative 90.90 450.00 -360.90 -270.00 90.00

direction

negative 91.10 450.00 -361.10 -270.00 90.00 outside TF
direction

negative 89.10 450.00 -359.10 -270.00 90.00

direction

negative 88.90 450.00 -718.90 -630.00 90.00 outside TF
direction

negative 90.00 810.00 -720.00 -630.00 90.00

direction

negative 90.90 810.00 -720.90 -630.00 90.00

direction

negative 91.10 810.00 -721.10 -630.00 90.00 outside TF
direction

negative 89.10 810.00 -719.10 -630.00 90.00

direction

negative 88.90 810.00 -1078.90 -990.00 90.00 outside TF
direction

Modulo calculations within the PLC program

In TwinCAT NC, all axis positioning tasks are executed based on the set position. The current actual position
is only used for control purposes. If a PLC program is to calculate a new target position based on the current
position, the current set position of the axis has to be used in the calculation (Axis.NcToPlc.ModuloSetPos
and Axis.NcToPIlc.ModuloSetTurns).

It is not recommended to perform order calculations on basis of the modulo actual position available in the
cyclic axis interface (ModuloActPos and ModuloActTurns). Due to the larger or smaller control deviation of
the axis, errors can occur in the programmed sequence, such as unwanted rotations.

70 Version: 1.3 TX1200

BECKHOFF Motion function blocks

Application example

Within a system, a rotational axis carries out an operation. The starting position for each operation is 90°,
and with each cycle the axis is to be positioned by 360° in positive direction. Reverse positioning is not
permitted for mechanical reasons. Small reverse positioning is acceptable as part of position control
movements.

The modulo tolerance window is set to 1.5° in the System Manager. This ensures that undesirable axis turns
after an axis reset are avoided. Since the axis may only be positioned in positive direction, the command

MC MoveModulo [»_64] with modulo start type positive direction (MC_Positive _Direction) is used. The
modulo target position is specified as 450°, since the original orientation is to be reached again after a full
turn by 360°. A modulo target position of 90° would not lead to any motion.

The process starts with a basic positioning movement (MC MoveModulo [P _64]) to ensure that the starting
position is accurate. The step sequence then changes into an execution cycle. In the event of a fault, the
axis is reset with MC Reset [P 20] and subsequently (at the start of the step sequence) moved to its valid
starting position. In this case, 90° is specified as the target position to enable this position to be reached as
quickly as possible. No motion occurs if the axis is already at the starting position.

Grundpositionisrung mit
MC_MovelModulo
Position = 90
Direction = MC_Paositive_Direction

Start

¥

Warten auf Taktsignal

L

|
Takisignal

¥

Positionierung um eine ganze
Umdrehung mit MC_MoveModulo
Position = 450
Direction = MC_Positive_Direction

nein

Achsfehler?

Achsresat mit MC_Reset

Alternatively, the reset step may be carried out at the start of the step sequence, so that the axis is initialized
at the start of the process.

TX1200 Version: 1.3 71

Motion function blocks BEGKHOFF

7.1.6 MC_MoveVelocity

MC_kove'valocity
—Executs In%'elocity—
—welocity Busyvl—
—Acceleration Activel—
—Deceleration CommandAboted—
—{Jerk Error—
—Direction ErrorlDF—
—Bufferkdode
—Cptions
—|Axis b

MC_MoveVelocity starts a continuous movement with specified velocity and direction. The movement can be
stopped through a Stop command.

The InVelocity output is set once the constant velocity is reached. Once constant velocity has been reached,
the block function is complete, and no further monitoring of the movement takes place. If the command is
aborted during the acceleration phase, the CommandAborted or, on error, the Error output is set.

@ Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the
axis parameters. A motion command such as MC_MoveAbsolute then automatically leads to

1 decoupling of the axis, after which the command is executed. In this case the only available buffer
mode is Aborting.

Inputs

VAR INPUT

Execute : BOOL; (* B *)

Velocity : LREAL; (* E ¥*)

Acceleration : LREAL; (* E *)

Deceleration : LREAL; (* E *)

Jerk : LREAL; (* E *)

Direction : MC Direction := MC Positive Direction; (* E *)
BufferMode : MC BufferMode; (* E *)

Options : ST MoveOptions; (* V *)

END VAR

MC BufferMode [» 103] MC Direction [» 105]

Execute The command is executed with a rising edge at
Execute input.

Velocity Travel velocity (>0).

Acceleration Acceleration (=0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (=0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.
Direction Positive or negative direction of travel of type
MC Direction [»_105].
BufferMode The BufferMode [P_103] is analyzed, if the axis is

already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
transition condition from the current to the next
command is also defined by the BufferMode.

If the command is applied to a coupled slave axis,

72 Version: 1.3 TX1200

BECKHOFF

Motion function blocks

only the buffer mode Aborting is possible.

To use the BufferMode, a second function block is
always necessary. It is not possible to trigger a move
function block with new parameters while it is active.

Options

The data structure Options includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [» 14]

Outputs

VAR OUTPUT

InVelocity : BOOL; (* B *)
Busy : BOOL; (* E ¥*)

Active : BOOL; (* E *)
CommandAborted : BOOL; (* E *)
Error : BOOL; (* B *)

ErrorID : UDINT; (* E ¥*)
END_VAR

InVelocity

The output InVelocity becomes TRUE, as soon as
the constant velocity is reached. It may switch back
to FALSE, if the velocity differs.

The function block remains Busy and Active until a
new command is issued.

Busy

The Busy output becomes TRUE as soon as the
command is started with Execute and remains TRUE
as long as the function block is active. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
CommandAborted or Error, is set.

Active

Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted

Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [P 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [P 101]

AXxis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis unambiguously within the system. Among

other parameters it contains the current axis status, including position, velocity or error state.

TX1200

Version: 1.3 73

Motion function blocks

BECKHOFF

71.7

MC_MoveContinuousAbsolute

FMC_PMioveContinuousAhsolute

—Execute InEndvelocity
—Fuosition Busy
—elocity Active
—Endvelocity Commandabored
—Acceleration Error
—Deceleration ErrarlD

—Jerk,

Cptions
—dxis b

Buffertdode

MC_MoveContinuousAbsolute starts positioning to an absolute target position and monitors the axis
movement over the whole travel path. At the target position a constant end velocity is reached, which is
maintained. The InEndVelocity output is set once the target position was reached. Otherwise the

CommandAborted or, on error, the Error output is set.

Once the target position has been reached, the block function is complete and the axis is no longer

monitored.

Inputs

VAR INPUT

Execute : BOOL;
Position : LREAL;
Velocity : LREAL;

EndVelocity :

Acceleration :

Deceleration
Jerk : LREAL;

LREAL;
LREAL;
: LREAL;

BufferMode : MC BufferMode;
Options : ST MoveOptions;
END VAR

MC BufferMode [» 103]

Execute The command is executed with a rising edge at input
Execute.

Position Absolute target position

Velocity Maximum velocity for the movement to the target
position (>0).

EndVelocity End velocity to be maintained once the target position

has been reached.

Acceleration

Acceleration (=0). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk

Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode

The BufferMode [P_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

74

Version: 1.3 TX1200

BECKHOFF

Motion function blocks

A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options

The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [» 14]

Outputs

VAR OUTPUT
InEndvVelocity : BOOL;
Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR

InEndVelocity

The InEndVelocity output becomes TRUE once the
target position was reached.

The function block remains Busy and Active until a
new command is issued.

Busy

The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active

Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted

Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [»_14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [»_101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

1 MC_MoveContinuousAbsolute is not implemented for fast/slow axes.

TX1200

Version: 1.3 75

Motion function blocks

BECKHOFF

7.1.8 MC_MoveContinuousRelative

M _Mowve ContinuousFelative

—Execute InEndvelocity
—Distance Busy
—|welacity Active
—Endelocity CommandAbored
—Acceleration Error

Deceleration
—Jerk
Bufferkdode
Options
—|Axis &

ErrarlD

MC_MoveContinuousRelative starts positioning by a relative distance and monitors the axis movement over
the whole travel path. At the target position a constant end velocity is reached, which is maintained. The
InEndVelocity output is set once the target position was reached. Otherwise the CommandAborted or, on

error, the Error output is set.

Once the target position has been reached, the block function is complete and the axis is no longer

monitored.

Inputs

VAR INPUT

Execute : BOOL;
Distance : LREAL;
Velocity : LREAL;
EndVelocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;

BufferMode : MC BufferMode;

Options : ST MoveOptions;
END VAR

MC BufferMode [» 103]

Execute The command is executed with a rising edge at input
Execute.

Distance Relative distance to be used for positioning.

Velocity Maximum velocity for the movement over the
distance (>0).

EndVelocity End velocity to be maintained after the relative

distance

Acceleration

Acceleration (20). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (=0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk

Jerk (=0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode

The BufferMode [P_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

76

Version: 1.3 TX1200

BECKHOFF

Motion function blocks

A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options

The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [» 14]

Outputs

VAR OUTPUT
InEndvVelocity : BOOL;
Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR

InEndVelocity

The InEndVelocity output becomes TRUE once the
target position was reached.

The function block remains Busy and Active until a
new command is issued.

Busy

The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active

Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted

Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [»_14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [»_101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

1 MC_MoveContinuousRelative is not implemented for fast/slow axes.

TX1200

Version: 1.3 77

Motion function blocks

BECKHOFF

7.1.9 MC_Halt

Execute
Deceleration
—Jerk
Bufferbdode
Options
—Axis b

kAC_Halt
Done
Busy
Arctive
Commandaborted
Errar
ErrarlD

MC_Halt stops an axis with a defined braking ramp.

In contrast to MC Stop [P 80], the axis is not locked against further movement commands. The axis can
therefore be restarted through a further command during the braking ramp or after it has come to a halt.

Travel commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. A motion command such as MC_Halt then automatically leads to uncoupling of the axis, after
which the command is executed. In this case only Buffer-ModeAborting is possible.

Inputs

VAR_INPUT
Execute : BOOL;

Deceleration : LREAL;

Jerk : LREAL;

BufferMode : MC_BufferMode;
Options : ST MoveOptions;

END VAR

MC BufferMode [P 103]

Execute

The command is executed with a rising edge at input
Execute.

Deceleration

Deceleration (20). If the value is 0, the deceleration
parameterized with the last Move command is used.
For safety reasons MC_Halt and MC Stop [» 80]
cannot be executed with weaker dynamics than the
currently active travel command. The
parameterization is adjusted automatically, if
necessary.

Jerk

Jerk (20). If the value is 0, the jerk parameterized with
the last Move command is used.

For safety reasons MC_Halt and MC Stop [» 80]
cannot be executed with weaker dynamics than the
currently active travel command. The
parameterization is adjusted automatically, if
necessary.

BufferMode

The BufferMode [P_103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

If the command is applied to a coupled slave axis
used, the only available buffer mode is Aborting.
Special characteristics of MC_Halt: The MC_buffer
mode has no effect, if the command is executed
when the system is at a standstill. The blending
modes MC_BlendingNext and MC_BlendingLow do
not change the last target position, although they can

78

Version: 1.3 TX1200

BECKHOFF

Motion function blocks

result in a change in dynamics (deceleration) of the
stop ramp. The modes MC_BlendingPrevious and
MC_BlendingHigh extend the travel to the original
target position. The stop ramp is only initiated when
this position is reached (defined braking point).

Options

Currently not implemented - The data structure option
includes additional, rarely required parameters. The
input can normally remain open.

General rules for MC function blocks [» 14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END_ VAR

Done

The Done output becomes TRUE, if the axis was
stopped and has come to a standstill.

Busy

The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs, Done,
CommandAborted or Error, is set.

Active

Active indicates that the command is executed If the
command was queued, it becomes active once a
running command is completed.

CommandAborted

Becomes TRUE, if the command could not be fully
executed. The running command may have been
followed by a Move command.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [P 14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [P 101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other

parameters it contains the current axis status, including position, velocity or error status.

TX1200

Version: 1.3 79

Motion function blocks BEGKHOFF

7.1.10 MC_Stop

=top
MC_Stap

—Execute Dane—
—Deceleration Busyvr—
—Jerk Activel—
—Options CommandAborted—
—Axis Error—

ErrorlDF—

MC _Stop stops an axis with a defined deceleration ramp and locks it against other motion commands. The
function block is therefore suitable for stops in special situations, in which further axis movements are to be
prevented.

At the same time the axis is blocked for other motion commands. The axis can only be restarted once the
Execute signal has been set to FALSE after the axis has stopped. A few cycles are required to release the
axis after a falling edge of Execute. During this phase the Busy output remains TRUE, and the function
block has to be called until Busy becomes FALSE.

The locking of the axis is canceled with an MC_Reset.

Alternatively, the axis can be stopped with MC Halt [»_78] without locking. MC_Halt is preferable for normal
movements.

Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. A motion command such as MC_Stop then automatically leads to decoupling of the axis, after
which the command is executed.

Inputs

VAR _INPUT

Execute : BOOL;
Deceleration : LREAL;
Jerk : LREAL;

Options : ST MoveOptions;
END VAR

Execute The command is executed with a rising edge at input
Execute.

The axis is locked during the stop. The axis can only
be restarted once the Execute signal has been set to
FALSE after the axis has stopped.

Deceleration Deceleration (20). If the value is 0, the deceleration
parameterized with the last move command takes
effect. For safety reasons

MC _Stop and MC_Halt cannot be executed with
weaker dynamics than the currently active motion
command. The parameterization is adjusted
automatically, if necessary.

Jerk Jerk (20). If the value is 0, the jerk parameterized with
the last Move command takes effect. For safety
reasons

MC_Stop and MC_Halt cannot be executed with
weaker dynamics than the currently active motion
command. The parameterization is adjusted
automatically, if necessary.

80 Version: 1.3 TX1200

BECKHOFF

Motion function blocks

Options

Currently not implemented - The data structure
Options includes additional, rarely required
parameters. The input can normally remain open.

General rules for MC function blocks [P 14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR

Done

The Done output becomes TRUE, if the axis was
stopped and has come to a standstill.

Busy

The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order.

3 Busy remains TRUE as long as the axis is
locked. The axis is only unlocked and Busy
becomes FALSE when Execute is set to FALSE.

Active

Active indicates that the function block is controlling
the axis.

m Active remains TRUE as long as the axis is
locked. The axis is only unlocked and Active
becomes FALSE when Execute is set to FALSE.

CommandAborted

Becomes TRUE, if the command could not be fully
executed.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [P 14]

Inputs/outputs

VAR IN_OUT
Axis : AXIS REF;
END_ VAR

AXIS REF [P 101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis unambiguously within the system. Among

other parameters it contains the current axis status, including position, velocity or error state.

TX1200

Version: 1.3 81

Motion function blocks

BECKHOFF

7.2 Superposition

7.21 MC_MoveSuperimposed

Execute
—Mode
Distance
"elocityDiff
Acceleration
Deceleration
—Jerk.
“'elocityFrocess
Length
Cptions
—|Ais B

MC_MoveSuperlmposed

Clone

Busy

Active
Commandibored
Error

ErrarlD

Warning
Warningld
ActualvelocityDift
ActualDistance
ActualLength
ActualAcceleration
ActualDeceleration

MC_MoveSuperimposed starts a relative superimposed movement while the axis is already moving. The
current movement is not interrupted. The Done output is set once the superimposed movement is
completed. The original subordinate movement may continue to be active and is monitored by the
associated Move function block.

The superposition function becomes clear, if one considers two axes moving at the same speed. If one of the
axes is superimposed by MC_MoveSuperimposed, it will precede or follow the other axis as determined by
the Distance parameter. Once the superimposed movement is completed, the Distance between the two

axes is maintained.

MC_MoveSuperimposed can be applied to single axes, master axes or slave axes. For a slave axis the
superimposed movement only affects the slave axis. If the function is used for a master axis, the slave will

follow the superimposed movement of the due master due to the axis coupling.

Since MC_MoveSuperimposed executes a relative superimposed movement, the target position for the

subordinate travel command changes by Distance.

The superimposed movement depends on the position of the main movement. This means that a velocity
change of the main movement also results in a velocity change in the superimposed movement, and that the
superimposed movement is inactive if the main movement stops. The Options parameter can be used to
specify whether the superimposed movement is to be aborted or continued if the main movement stops.

Application examples for MC MoveSuperimposed [P 84]

Inputs

VAR INPUT

Execute : BOOL; (* B *)

Mode : E SuperpositionMode;
Distance : LREAL; (* B *)

VelocityDiff : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL; (* E *)

(* E *)
(* E *)
(* E *)

VelocityProcess : LREAL; (* V *)

Length : LREAL; (* V ¥*)
Options : ST SuperpositionOptions;

END VAR

ST SuperpositionOptions [»_107] E SuperpositionMode [P_106]

(* v %)

Execute

The command is executed with a rising edge at input Execute.

82

Version: 1.3

TX1200

BECKHOFF

Motion function blocks

Mode

Mode [P_106] determines the type of the superimposed motion.

Distance

Relative distance to catch up. A positive value means increase in
velocity by an amount required to cover the additional distance,
compared with the unaffected movement. A negative value results in
braking and falling back by this distance.

VelocityDiff

Maximum velocity difference to the current velocity (basic velocity) of
the axis (>0).

For this parameter a distinction may have to be made, depending on
the superimposition direction (acceleration or deceleration). If, for
example, a direction reversal is not permitted, the maximum available
acceleration corresponds to the maximum velocity, and the maximum
deceleration to stop. Therefore, there are two possible maximum values
for VelocityDiff:

1. 1. Distance > 0 (axis accelerates)

VelocityDiff = maximum speed - basic speed

2. Distance > 0 (axis decelerates)

VelocityDiff = basic speed

Acceleration

Acceleration (=0). If the value is 0, the standard acceleration from the
axis configuration in the System Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard deceleration from the
axis configuration in the System Manager is used.

Jerk

Jerk (20). If the value is 0, the standard jerk from the axis configuration
in the System Manager is used.

VelocityProcess :

Mean process speed in the axis (>0).If the basic velocity during
superposition is constant, the set axis velocity can be specified.

Length Distance over which the superimposed movement is available. The
Mode parameter defines how this distance is interpreted.

Options The data structure option includes additional, rarely required
parameters. The input can normally remain open.

Options. AbortOption AbortOption defines the behavior

when the subordinate movement
stops. The superimposed
movement can be aborted or
continued later.

General rules for MC function blocks [» 14]

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

Warning : BOOL;

WarningID : UDINT;
ActualVelocityDiff : LREAL;
ActualDistance : LREAL;
Actuallength : LREAL;
ActualAcceleration : LREAL;
ActualDeceleration : LREAL;

END_ VAR

Done The Done output becomes TRUE, once the
superimposed movement was completed
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy

TX1200

Version: 1.3 83

Motion function blocks

BECKHOFF

becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed

CommandAborted Becomes TRUE, if the command was aborted by
another command and could therefore not be
completed.

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Warning Warning becomes TRUE if the action cannot be
executed completely.

WarningID The block returns warning 4243, (16963) if the

compensation was incomplete due to the
parameterization (distance, velocity, etc.). In this
case compensation is implemented as far as
possible. The user has to decide whether to interpret
this warning message within his application as a
proper error or merely as a warning.

ActualVelocityDiff:

Actual velocity difference during the superimposed
motion (ActualVelocityDiff < VelocityDiff).

ActualDistance:

Actual superimposed distance. The block tries to
reach the full Distance as specified. This distance
may not be reached fully, depending on the
parameterization (VelocityDiff, Acceleration,
Deceleration, Length, Mode). In this case the
maximum possible distance is superimposed.
(ActualDistance < Distance).

ActualLength

Actual travel during superimposed motion
(ActualLenght < Length).

ActualAcceleration

Actual acceleration of the superimposed movement
(ActualAcceleration<Acceleration).

ActualDeceleration

Actual deceleration of the superimposed movement
(ActualDecelerationsDeceleration).

General rules for MC function blocks [»_14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [P 101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.2.2 Application examples for MC_MoveSuperimposed

The function block MC MoveSuperimposed [P 82] starts a superimposed movement on an axis that is

already moving. For this superposition various applications are available that are described below.

84

Version: 1.3

TX1200

BEGKHOFF Motion function blocks

Distance correction for products on a conveyor belt

A conveyor belt consists of individual segments, each driven by an axis. The conveyor belt is used for
transporting packages, the spacing of which is to be corrected. To this end a conveying segment must briefly
run faster or slower relative to a following segment.

1800

1000 |

O = () e ()

The measured distance is 1800 mm and is to be reduced to 1500 mm. Conveyor belt 1 should be
accelerated in order to reduce the distance. The correction must be completed by the time the end of belt 1
is reached in order to prevent the package being pushed onto the slower belt 2.

Since in this situation conveyer 1 has to be accelerated the drive system requires a velocity reserve,
assumed to be 500 mm/s in this case. In practice this value can be determined from the difference between
the maximum conveyor speed and the current set velocity.

For parameterization of function block MC MoveSuperimposed [P_82] this means:

Distance = 1800 mm - 1500 mm = 300 mm (distance correction)

Length = 1000 mm (available distance up to the end of belt 1)

Mode = SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION
VelocityDiff = 500 mm/s

The mode defines that the distance Length up to the end of the conveyor belt is used for the correction and
that the correction is completed at this point. The system uses the internally calculated velocity as degree of
freedom. VelocityDiff therefore is the upper limit for the velocity change in this case.

Alternatively the correction could be achieved by decelerating belt 2. In this case Distance must be negative
and the available correction distance Length is the distance between the right-hand package and the end of
the belt. The maximum possible velocity change VelocityDiff corresponds to the current set velocity. Belt 2
could therefore be decelerated down to zero, if necessary.

Phase shift of a print roller

A print roller rotates with constant peripheral velocity at the same speed as conveyor belt on which a
workpiece to be printed is transported. For synchronization with the workpiece the print roller is to be
advanced by a certain angle (phase shift).

TX1200 Version: 1.3 85

Motion function blocks BEGKHOFF

715 =

A1

O o > O

The phase shift can be implemented in two ways. The angle can be corrected as quickly as possible,
resulting in a short-term strong increase in the velocity of the print roller. Alternatively a correction distance
can be defined within which the correction can occur, e.g. a complete roller revolution. This leads to the

following possible parameterizations for function block MC MoveSuperimposed [P_82]:

1. Fast correction:

Distance =7.1°

Length = 360° (maximum possible correction distance)

Mode = SUPERPOSITIONMODE_LENGTHREDUCTION_LIMITEDMOTION
VelocityDiff = 30°/s (velocity reserve)

The mode specifies that the correction distance should be as short as possible. The stated value for Length
therefore is an upper limit that can be chosen freely (but not too small).

Alternatively SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION can be used as Mode. In
this case the whole correction distance would be up to 367.1°. Since the distance should be as short as
possible both modes are equivalent in this case.

2. Slow correction:

Distance = 7.1°

Length = 360° (correction distance)

Mode = SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION
VelocityDiff = 30°/s (velocity reserve)

The mode specifies that the correction distance should be utilized fully and the velocity change should be
kept as small as possible. The stated value for VelocityDiff therefore is an upper limit that can be chosen
freely (but not too small).

Drilling unit

A drilling unit should drill two holes in a moving workpiece. Synchronization for the first hole is assumed to be
achieved via the flying saw (MC_GearlnPos) and is not be considered here. After the first operation the
device must be moved by certain distance relative to the moving workpiece.

86 Version: 1.3 TX1200

BEGKHOFF Motion function blocks

Al

l 250 400

O i = ()

The drilling unit is to be advanced by 250 mm relative to the workpiece after the first hole has been drilled.
Meanwhile the workpiece covers a distance of 400 mm. From this position the drilling unit is once again
synchronous with the workpiece and the second hole can be drilled.

Here too two options are available that differ in terms of the velocity change of the drilling device and
therefore in the mechanical strain.

Parameterization of function block MC MoveSuperimposed [»_821:

1. Fast correction:

Distance = 250 mm

Length = 400 mm

Mode = SUPERPOSITIONMODE_LENGTHREDUCTION_ADDITIVEMOTION
VelocityDiff = 500 mm/s (velocity reserve of the drilling device)

The mode specifies that the correction distance should be as short as possible. The stated value for Length
therefore is an upper limit that can be chosen freely (but not too small). The drilling device can travel a larger
distance since Length refers to the workpiece plus a relative change in position.

2. Slow correction:

Distance = 250 mm

Length = 400 mm

Mode = SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION
VelocityDiff = 500 mm/s (velocity reserve of the drilling device)

The mode specifies that the correction distance should be utilized fully and the velocity change should be
kept as small as possible. The stated value for VelocityDiff therefore is an upper limit that can be chosen
freely (but not too small). During the change in position the workpiece covers the distance Length, the drilling
unit travels 650 mm due to the additional correction distance (Length + Distance).

7.2.3 MC_AbortSuperposition

MC_AhortSuperposition
—Execute Done—
—Axis b Busy—

Error—
ErrorlD—

TX1200 Version: 1.3 87

Motion function blocks BEGKHOFF

The MC_AbortSuperposition block terminates a superimposed movement started by
MC MoveSuperimposed [P _82], without stopping the subordinate axis movement.

A full axis stop can be achieved with MC Stop [»_80] or MC Halt [»_78], if necessary. In this case
MC_AbortSuperposition does not have to be called.

Inputs

VAR INPUT
Execute : BOOL;
END VAR

Execute The command is executed with a rising edge and the
superimposed movement is completed.

Outputs

VAR OUTPUT

Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;

END_ VAR

Done Becomes TRUE when the superimposed movement
was successfully terminated.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Inputs/outputs

VAR _IN OUT

Axis : AXIS REF;

END_VAR

AXIS REF [»_101]

AXxis Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.3 Homing

7.31 MC_Home

MC_Home
—Execute Done—
—Fositian Busyr—
—Hominghode Activer—
—Buffertdode CommandAborted—
—Options Errorr—
—bCalibrationCam ErrordD—
—|Axis b

Calibration of the axis (referencing) is carried out with the function block MC_Home.

88 Version: 1.3 TX1200

BEGKHOFF Motion function blocks

Referencing mode is set in the TwinCAT System Manager via the Incremental encoder tab. Depending on
the connected encoder system, different procedures are possible (see also Reference mode for inkremental
encoder)

Inputs

VAR INPUT

Execute : BOOL;

Position : LREAL := DEFAULT HOME POSITION;

HomingMode : MC_HomingMode;
BufferMode : MC BufferMode;
Options : ST HomingOptions;
bCalibrationCam : BOOL;

END VAR

MC BufferMode [»_103] MC HomingMode [»_106]

Execute The command is executed with a rising edge at Execute input.

Position Absolute reference position to which the axis is set after homing.
Alternatively the constant DEFAULT_HOME_POSITION can be used
here. In this case, the Reference position for homing specified in the
TwinCAT System Manager is used.

5 Since the reference position is generally set during the
motion, the axis will not stop exactly at this position. The standstill
position deviates by the braking distance of the axis, nevertheless
the calibration is exact.

HomingMode HomingMode [»_106] determines in which way the calibration is carried
out.

* MC_DefaultHoming
Initiates standard homing.

* MC_Direct
Sets the axis position directly to Position without executing a move-
ment.

* MC_ForceCalibration
Enforces the "axis is calibrated" state. No movement takes place,
and the position remains unchanged.

* MC_ResetCalibration
Resets the calibration state of the axis. No movement takes place,
and the position remains unchanged.

BufferMode Currently not implemented - BufferMode is analyzed if the axis is
already executing another command. The running command can be
aborted, or the new command becomes active after the running
command. The BufferMode also determines the transition condition
from the current to the next command.

Options The data structure Options includes additional, rarely required
parameters. The input can normally remain open.
Options. ClearPositionLag ClearPositionLag is only effective

in MC_Direct mode.
ClearPositionLagcan optionally be
used to set the set and actual
positions to the same value. In this
case the following error is cleared.

bCalibrationCam bCalibrationCam reflects the signal of a referencing cam that may enter
the controller via a digital input.

General rules for MC function blocks [» 14]

TX1200 Version: 1.3 89

http://infosys.beckhoff.de/content/1033/tcadsdevicenc/html/tcncadsappendix.htm
http://infosys.beckhoff.de/content/1033/tcadsdevicenc/html/tcncadsappendix.htm

Motion function blocks

BECKHOFF

Outputs

VAR OUTPUT

Done : BOOL;

Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR

Done

The Done output becomes TRUE, if the axis was
calibrated and has come to a standstill.

Busy

The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active

Currently not implemented - Active indicates that the
command is running. If the command was queued, it
becomes active once a running command is
completed.

CommandAborted

Becomes TRUE, if the command could not be fully
executed.

Error

Becomes TRUE if an error occurs.

ErroriD

If the error output is set, this parameter supplies the
error number.

General rules for MC function blocks [»_14]

Inputs/outputs

VAR IN OUT
Axis : AXIS REF;
END VAR

AXIS REF [P 101]

Axis

Axis data structure

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Note

The referencing process has several phases. The referencing state (calibration state) is signaled in the cyclic
interface of the axis (Axis.NcToPlc.HomingState). The following diagram illustrates the individual process

phases after starting of the MC_Home block.

If an axis is to be referenced without reference cam, i.e. only based on the sync pulse of the sensor, the
reference cam can be simulated via the PLC program. The bCalibrationCam signal is initially activated and

then cancelled, if Axis.NcToPlc.HomingState [P_102] is equal or greater 4.

90

Version: 1.3 TX1200

BECKHOFF

Motion function blocks

A

@ calibration state

@

® ® ® ®

calibration cam active

- - fB{AH- UOHBZMOUAS - - - - - -

k

7.4 Manual motion

7.41 MC_Jog
hC_Jog
—JogFonward Done
—JogBackwards Busy
—tdode Active
—Fositian CommandAbored
—elocity Error

Acceleration
Deceleration
—Jerk

—|Axis &

ErrarlD

The MC_Jog function block enables an axis to be moved via manual keys. The key signal can be linked
directly with the JogForward and JogBackwards inputs. The required operating mode is specified via the
mode input. An inching mode for moving the axis by a specified distance whenever the key is pressed is also
available. The velocity and dynamics of the motion can be specified depending on the mode.

Inputs

VAR INPUT

JogForward : BOOL;
JogBackwards : BOOL;
Mode : E JogMode;
Position : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;

END_ VAR

E JogMode [»_108]

JogForward

The command is executed with rising edge, and the
axis is moved in positive direction of

travel. Depending on the operation mode (see mode),
the axis moves as long as the signal remains TRUE,
or it stops automatically after a specified distance.
During the motion no further signal edges are

TX1200

Version: 1.3 91

Motion function blocks

BECKHOFF

accepted (this includes the JogBackwards input). If
signal edges occur simultaneously at the JogForward
and JogBackwards inputs, JogForward has priority.

JogBackwards The command is executed with rising edge and the
axis moved in negative direction of travel.
JogForward and JogBackwards should be triggered
alternatively, although they are also mutually locked
internally.

Mode The Mode [»_108] input specifies the mode for
manual operation.
MC_JOGMODE_STANDARD_SLOW:
the axis moves as long as the signal at one of the jog
inputs is TRUE. The low velocity for manual functions
specified in the TwinCAT System Manager and
standard dynamics are used. In this operation mode
the position, velocity and dynamics data specified in
the function block have no effect.
MC_JOGMODE_STANDARD_FAST:
the axis moves as long as the signal at one of the jog
inputs is TRUE. The high velocity for manual
functions specified in the TwinCAT System Manager
and standard dynamics are used. In this mode the
position, velocity and dynamics data specified in the
function block have no effect.
MC_JOGMODE_CONTINOUS:
the axis is moved as long as the signal at one of the
jog inputs is TRUE. The velocity and dynamics data
specified by the user are used. The position has no
effect.

MC_JOGMODE_INCHING:

with rising edge at one of the jog inputs the axis is
moved by a certain distance, which is specified via
the position input. The axis stops automatically,
irrespective of the state of the jog inputs. A new
movement step is only executed once a further rising
edge is encountered. With each start the velocity and
dynamics data specified by the user are used.
MC_JOGMODE_INCHING_MODULO:

with rising edge at one of the jog inputs the axis is
moved by a certain distance which is specified via the
position input. The axis position will snap to an
integer multiple of the position parameter. The axis
stops automatically, irrespective of the state of the
jog inputs. A new movement step is only executed
once a further rising edge is encountered. With each
start the velocity and dynamics data specified by the
user are used.

Position relative distance for movements in
MC_JOGMODE INCHING operation mode.

Velocity Maximum travel velocity (>0).

Acceleration

Acceleration (=0). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk

Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

92

Version: 1.3 TX1200

BECKHOFF

Motion function blocks

The parameters Position, Velocity, Acceleration, Deceleration and Jerk are not used in the

1 operation modes MC_JOGMODE_STANDARD_SLOW and MC_JOGMODE_STANDARD_FAST

and can remain unassigned.

Outputs

VAR _OUTPUT

Done : BOOL;

Busy : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR

Done Becomes TRUE if a movement is completed
successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state. Only then can a further edge be
accepted at the jog inputs.

Active Active indicates that the axis is moved via the jog
function.

CommandAborted Becomes TRUE if the process is interrupted by an
external event, e.g. by the call up of MC Stop [»_80].

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Inputs/outputs

VAR IN OUT

Axis : AXTS REF;

END_ VAR

AXIS REF [P 101]

Axis

Axis data structure

The axis data structure of type AXIS REF [»_101] addresses an axis unambiguously within the system. Among

other parameters it contains the current axis status, including position, velocity or error state.

7.5 Axis coupling

7.5.1 MC_Gearln
bZ_Geatln

—Execute InGear
—RatioMurmerator Busy
—RatioDenaminator Arctive
—Acceleration Commandaboned
—Deceleration Errar
—Jetk ErrarlD
—Buffertdode
—Options
—kdaster =
—Slawe =

TX1200

Version: 1.3 93

Motion function blocks BEGKHOFF

The function block MC_Gearlin activates a linear master-slave coupling (gear coupling). The block accepts a
fixed gear ratio in numerator/denominator format.

The slave axis can be coupled to the master axis when stationary. This block cannot be used for
synchronization while the master axis is in motion. In this case the Flying Saw block MC_GearInVelo or
MC_GearlnPos can be used.

The slave axis can be uncoupled with the function block MC GearQOut [» 97]. If the slave is decoupled while
it is moving, then it retains its velocity and can be halted using MC Stop [P 80]or MC Halt [P 78].

Alternatively, the block MC GearlnDyn [P _95] with dynamically variable gear ratio is available.

Inputs

VAR INPUT

Execute : BOOL;
RatioNumerator : LREAL;
RatioDenominator : UINT;
Acceleration : LREAL;
Deceleration : LREAL;

Jerk : LREAL;

BufferMode : MC BufferMode;
Options : ST GearInOptions;
END VAR

MC BufferMode [» 103]

Execute The command is executed with a rising edge at input
Execute.
RatioNumerator Gear ratio numerator.

Alternatively, the gear ratio can be specified in the
numerator as a floating point value, if the
denominator is 1.

RatioDenominator Gear ratio denominator

Acceleration Acceleration (=0). (currently not implemented)
Deceleration Deceleration (20). (currently not implemented)
Jerk Jerk (20). (currently not implemented)
BufferMode Currently not implemented

Options Currently not implemented

For a 1:4 ratio the RatioNumerator must be 1, the RatioDenominator must be 4. Alternatively, the
RatioDenominator may be 1, and the gear ratio can be specified as floating-point number 0.25 under
RatioNumerator. The RatioNumerator may be negative.

Outputs

VAR _OUTPUT

InGear : BOOL;

Busy : BOOL;

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;

ErrorID : UDINT;

END VAR
InGear Becomes TRUE, if the coupling was successful.
Busy The Busy output becomes TRUE when the command

is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs InGear,
CommandAborted or Error is set.

94 Version: 1.3 TX1200

BECKHOFF Motion function blocks

Active Active indicates that the command is executed
(currently Active=Busy, see BufferMode)
CommandAborted Becomes TRUE, if the command could not be fully

executed. The axis may have become decoupled
during the coupling process (simultaneous command

execution).
Error Becomes TRUE if an error occurs.
ErroriD If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR IN OUT

Master : AXIS REF;
Slave : AXIS REF;
END_ VAR

AXIS REF [» 101] AXIS REF [P 101]

Master Master axis data structure.
Slave Axis data structure of the Slave.

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.5.2 MC_GearinDyn

MC_GearlnDyn

—Enahle IhGeat—
—GearRatio Busyr—
—Acceleration Activer—
“Deceleration Commandaborted—
—Jerk. Errar—
—Buffertdode ErrarlD—
—Cptions

—Master &

—Slawe e

The function block MC_Gearlin activates a linear master-slave coupling (gear coupling). The gear ratio can
be adjusted dynamically during each PLC cycle. Hence a controlled master/slave coupling can be build up.
The Acceleration parameter has a limiting effect in situations with large gear ratio variations.

The slave axis can be uncoupled with the function block MC GearQOut [» 97]. If the slave is decoupled while
it is moving, then it retains its velocity and can be halted using MC Stop [» _80]or MC Halt [»_78].

Alternatively, the block MC Gearln [»_ 93] with dynamically variable gear ratio is available.

Inputs

VAR INPUT

Enable : BOOL;

GearRatio : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;

Jerk : LREAL;

BufferMode : MC BufferMode;
Options : ST GearInDynOptions;
END VAR

TX1200 Version: 1.3 95

Motion function blocks

BECKHOFF

MC BufferMode [» 103]

Enable

Coupling is activated with a rising edge at input
Enable. The gear ratio can be changed cyclically as
long as Enable is TRUE.

The command is terminated if Enable becomes
FALSE after coupling. The gear ratio is frozen at its
last value, but the slave is not decoupled.

GearRatio

Gear ratio as floating point value. The gear ratio can
be changed cyclically as long as Enable is TRUE. If
ENABLE is FALSE, the gear ratio remains
unchanged.

Acceleration

Acceleration (20). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used. The parameter limits the
acceleration of the slave in situations with large gear
ratio variations.

The maximum acceleration is only reached at the
maximum master velocity. Otherwise the slave
acceleration is below this value when the gear ratio
changes significantly.

Deceleration

Deceleration (=0). (Not implemented)

Jerk Jerk (20). (Not implemented)
BufferMode Currently not implemented
Options Currently not implemented
Outputs

VAR OUTPUT

InGear : BOOL;
Busy : BOOL;
Active : BOOL;

CommandAborted : BOOL;

Error : BOOL;
ErrorID : UDINT;

END_ VAR

InGear Becomes TRUE, if the coupling was successful.

Busy The Busy output becomes TRUE when the command
is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs InGear,
CommandAborted or Error is set.

Active Active indicates that the command is executed
(currently Active=Busy, see BufferMode)

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have become decoupled
during the coupling process (simultaneous command
execution).

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Inputs/outputs

VAR IN OUT

Master : AXIS REF;
Slave : AXIS REF;
END VAR

96

Version: 1.3 TX1200

BEGKHOFF Motion function blocks

AXIS REF [»_101] AXIS REF [»_101]

Master Master axis data structure.

Slave Axis data structure of the Slave.

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.5.3 MC_GearOut

MC_GearCut
—Execute Donef—
—Options Busy—
—Slawe & Errar—

ErrarlDf—

The function block MC_GearOut deactivates a master-slave coupling.

No standstill of the axis due to decoupling

When a slave axis is uncoupled during the movement, it is not stopped automatically but reaches a
constant velocity at which it continues to travel infinitely.

You can stop the axis with the function blocks MC Halt [»_78] or MC Stop [»_80].

NOTICE

If the setpoint generator type of the axis is set to "7 phases (optimized)", the slave axis assumes an
acceleration-free state after uncoupling and continues to move with the resulting constant velocity. There is
no positioning based on the master travel path calculated with the coupling factor. Instead, the behavior
matches the behavior after a MC_MoveVelocity command. In TwinCAT 2.10, the setpoint generator type
can be selected by the user. From TwinCAT 2.11, the setpoint generator type is set to "7 phases
(optimized)". The behavior described here is the result of a project update from TwinCAT 2.10 to TwinCAT
2.11. Depending on the circumstances, an update of existing applications to version 2.11 may necessitate
an adaptation of the PLC program.

Inputs
VAR INPUT
Execute : BOOL;
Options : ST GearOutOptions;

END_VAR

Execute The command is executed with a rising edge at input Execute.

Options Currently not implemented

Outputs

VAR OUTPUT

Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;

END_VAR

Done Becomes TRUE, if the axis was successfully uncoupled.

Busy The Busy output becomes TRUE when the command is started with Execute and
remains TRUE as long as the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the same time one of the outputs,
Done or Error, is set.

Error Becomes TRUE if an error occurs.

TX1200 Version: 1.3 97

Motion function blocks

BECKHOFF

ErroriD

If the error output is set, this parameter supplies the error number. ‘

Inputs/outputs
VAR _IN_OUT

Slave :

END VAR

AXTS REF;

Slave

Axis data structure of the Slave [»_101].

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.5.4

MC_GearlnMultiMaster

MC_Geatlnkultibdaster

Enahle InGear—
GearRatiol Busy—
GearRatio? Activel—
GearRatio3 CommandAborted—
GearFatiod Errar—
Acceleration ErrarlD—

Decel
Jerk

Buffertdode
Options

kaste
kaste
kaste
haste
Slae

eration

1 e
e e
r3 e
rd e
=

The function block MC_GearlnMultiMaster is used to activate linear master/slave coupling (gear coupling) for
up to four different master axes. The gear ratio can be adjusted dynamically during each PLC cycle. The
slave movement is determined by the superimposed master movements. The Acceleration parameter has a
limiting effect in situations with large gear ratio variations.

The slave axis can be uncoupled with the function block MC GearOut [P 97]. If the slave is decoupled while it
is moving, then it retains its velocity and can be halted using MC Stop [»_80].

If fewer than four masters are used, an empty data structure can be transferred for parameters Master2 to
Master4 (the axis ID must be 0).

Inputs

VAR INPUT
Enable :
GearRatiol : LREAL;
GearRatio2 : LREAL;
GearRatio3 : LREAL;
GearRatio4 : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;

Jerk :

BOOL;

LREAL;

BufferMode : MC BufferMode;

Opt

ions

END VAR

: ST GearInMultiMasterOptions;

Enable

Coupling is activated with a rising edge at input
Enable. The gear ratio can be changed cyclically as
long as Enable is TRUE.

98

Version: 1.3 TX1200

BECKHOFF

Motion function blocks

The command is terminated if Enable becomes
FALSE after coupling. The gear ratio is frozen at its
last value, but the slave is not decoupled.

GearRatio1

Gear ratio as floating point value for the first master
axis. The gear ratio can be changed cyclically as long
as Enable is TRUE. If ENABLE is FALSE, the gear
ratio remains unchanged.

GearRatio2

Gear ratio as floating point value for the second
master axis. The gear ratio can be changed cyclically
as long as Enable is TRUE. If ENABLE is FALSE, the
gear ratio remains unchanged.

GearRatio3

Gear ratio as floating point value for the third master
axis. The gear ratio can be changed cyclically as long
as Enable is TRUE. If ENABLE is FALSE, the gear
ratio remains unchanged.

GearRatio4

Gear ratio as floating point value for the fourth master
axis. The gear ratio can be changed cyclically as long
as Enable is TRUE. If ENABLE is FALSE, the gear
ratio remains unchanged.

Acceleration

Acceleration (=0). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used. The parameter limits the
acceleration of the slave in situations with large gear
ratio variations.

Deceleration

Deceleration (20). If the value is 0, the standard
deceleration from the axis configuration in the System
Manager is used. The parameter limits the
deceleration of the slave in situations with large gear
ratio variations. Used only for the option
"Advanced Slave Dynamics".

Jerk

Jerk (20). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.
The parameter limits the jerk of the slave in situations
with large gear ratio variations. Used only for the
option "Advanced Slave Dynamics".

BufferMode

Currently not implemented

Options.

AdvancedSlaveDynamics

Exchanges the internal algorithm of the function
block. This makes it possible to synchronise to
masters already in motion. Acceleration and
deceleration should only be parameterized
symmetrically. If jerk presets are too large, this is
reduced to the extent that a change from zero to the
parameterized acceleration / deceleration can take
place in one NC cycle. The resolution of the
acceleration / deceleration thus depends directly on
the suitable parameterization of the jerk value.

Outputs

VAR OUTPUT
InGear : BOOL;
Busy : BOOL;
Active : BOOL;

CommandAborted : BOOL;

Error : BOOL;

ErrorID : UDINT;

END VAR

InGear Becomes TRUE, if the coupling was successful.
TX1200 Version: 1.3 99

Motion function blocks

BECKHOFF

Busy The Busy output becomes TRUE when the command
is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs InGear,
CommandAborted or Error is set.

Active Active indicates that the command is executed
(currently Active=Busy, see BufferMode)

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have become decoupled
during the coupling process (simultaneous command
execution).

Error Becomes TRUE if an error occurs.

ErroriD If the error output is set, this parameter supplies the
error number.

Inputs/outputs

VAR _IN_OUT

Masterl : AXIS REF;
Master2 : AXIS REF;
Master3 : AXIS REF;
Masterd4 : AXIS REF;
Slave : AXIS REF;
END VAR

AXIS REF [P 101] AXIS REF [»_101] AXIS REF [»_101] AXIS REF [»_101] AXIS REF [»_101]

Master1 Axis data structure of the first master.
Master2 Axis data structure of the second master.
Master3 Axis data structure of the third master.
Master4 Axis data structure of the fourth master.
Slave Axis data structure of the Slave.

The axis data structure of type AXIS REF [P_101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

100

Version: 1.3 TX1200

BEGKHOFF Data types

8 Data types

8.1 Axis interface

8.1.1 Data type AXIS_REF

The AXIS_REF data type contains axis information. AXIS_REF is an interface between the PLC and the NC.
It is added to MC function blocks as axis reference.

TYPE AXIS REF :

VAR INPUT

P1lcToNc AT %Q* : PLCTONC_AXIS REF;
END VAR

VAR OUTPUT

NcToPlc AT %I* : NCTOPLC AXIS REF;
ADS : ST AdsAddress;
Status : ST AxisStatus;
END VAR

END TYPE

ST AxisStatus [P _109] NCTOPLC AXIS REF [102] PLCTONC AXIS REF [»_102]

AXIS_REF elements

PlcToNc: PIcToNc [»_102] is a data structure that is cyclically exchanged between PLC and NC. Via this data
structure the MC function blocks communicate with the NC and send control information from the PLC to the
NC. This data structure is automatically placed in the output process image of the PLC and must be linked in
TwinCAT System Manager with the input process image of an NC axis.

NcToPlc: NcToPIc [P 102] is a data structure that is cyclically exchanged between PLC and NC. Via this data
structure the MC function blocks communicate with the NC and receive status information from the NC. This

data structure is automatically placed in the input process image of the PLC and must be linked in TwinCAT

System Manager with the output process image of an NC axis.

The NcToPIc [P_102] structure contains all main state data for an axis such as position, velocity and
instruction state. Since data exchange takes place cyclically, the PLC can access the current axis state at
any time without additional communication effort.

ADS: The ADS data structure contains the ADS communication parameters for an axis that are required for
direct ADS communication. Normally this structure does not have to be populated. The user can use it to
stored information for controlling an axis on another target system or via a special port number.

Status: The Status data structure [»_109] contains additional or processed status information for an axis. This
data structure is not refreshed cyclically, but has to be updated through the PLC program. The easiest way
to achieve this is by calling MC ReadStatus [»_30] or, alternatively, by calling the action ReadStatus of
AXIS_REF:

Example:

VAR
Axisl : AXIS REF (* axis data structure for Axis-1 ¥*)
END VAR

(* program code at the beginning of each PLC cycle *)
Axisl.ReadStatus;

ReadStatus should be called once at the start of each PLC cycle. The current status information can then be
accessed in AXIS_REF from the whole PLC program. Within a cycle the status does not change.

TX1200 Version: 1.3 101

Data types BEGKHOFF

8.1.2 Data type NCTOPLC_AXIS_REF

The data structure NCTOPLC_AXIS_REF is part of the AXIS REF [P_101] data structure and is automatically
updated by the NC, so that updated information is available during each PLC cycle. NCTOPLC_AXIS_ REF
is also referred to as axis interface between NC and PLC.

TYPE NCTOPLC AXIS REF

STRUCT

StateDWord : DWORD; (* Status double word *)

ErrorCode : DWORD; (* Axis error code *)

AxisState : DWORD; (* Axis moving status *)

AxisModeConfirmation : DWORD; (* Axis mode confirmation (feedback from NC) *)
HomingState : DWORD; (* State of axis calibration (homing) *)
CoupleState : DWORD; (* Axis coupling state *)

SvbEntries : DWORD; (* SVB entries/orders (SVB = Set preparation task) *)
SafEntries : DWORD; (* SAF entries/orders (SAF = Set execution task) *)
AxisId : DWORD; (* Axis ID *)

OpModeDWord : DWORD; (* Current operation mode *)
ActiveControlLoopIndex: WORD; (* Active control loop index *)

ControlLoopIndex : WORD; (* Axis control loop index (0, 1, 2, when multiple control loops are
used) *)

ActPos : LREAL; (* Actual position (absolut value from NC) *)
ModuloActPos : LREAL; (* Actual modulo position *)

ModuloActTurns : DINT; (* Actual modulo turns ¥*)

ActVelo : LREAL; (* Actual velocity ¥*)

PosDiff : LREAL; (* Position difference (lag distance) *)

SetPos : LREAL; (* Setpoint position *)

SetVelo : LREAL; (* Setpoint velocity *)

SetAcc : LREAL; (* Setpoint acceleration ¥*)

TargetPos : LREAL; (* Estimated target position *)

ModuloSetPos : LREAL; (* Setpoint modulo position *)

ModuloSetTurns : DINT; (* Setpoint modulo turns *)

CmdNo : WORD; (* Continuous actual command number *)

CmdState : WORD; (* Command state *)

END_STRUCT

END TYPE

Extended description of the TYPE NCTOPLC_AXLESTRUCT2 data structure

8.1.3 Data type PLCTONC_AXIS_REF

The data structure PLCTONC_AXIS_REF is part of the AXIS REF [P_101] data structure and cyclically
transfers information to the NC. PLCTONC_AXIS_REF is also referred to as axis interface between PLC and
NC.

TYPE PLCTONC AXIS REF

STRUCT

ControlDWord : DWORD; (* Control double word *)

Override : DWORD; (* Velocity override *)

AxisModeRequest : DWORD; (* Axis operating mode (PLC request) *)

AxisModeDWord : DWORD; (* optional mode parameter *)

AxisModeLReal : LREAL; (* optional mode parameter *)

PositionCorrection : LREAL; (* Correction value for current position *)

ExtSetPos : LREAL; (* external position setpoint *)

ExtSetVelo : LREAL; (* external velocity setpoint *)

ExtSetAcc : LREAL; (* external acceleration setpoint *)

ExtSetDirection : DINT; (* external direction setpoint *)

Reservedl : DWORD; (* reserved *)

ExtControllerOutput: LREAL; (* external controller output *)

GearRatiol : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
GearRatio2 : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
GearRatio3 : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
GearRatio4 : LREAL; (* Gear ratio for dynamic multi master coupling modes ¥*)
MapState : BYTE; (* reserved - internal use ¥*)

Reserved HIDDEN : ARRAY [105..127] OF BYTE;

END STRUCT

END TYPE

Extended description of the TYPE PLCTONC_AXLESTRUCT data structure

102 Version: 1.3 TX1200

BEGKHOFF Data types

8.2 Motion function blocks

8.21 Data type MC_BufferMode

The data type MC_BufferMode is used with various function blocks from the motion control library.
BufferMode is used to specify how successive travel commands are to be processed.

TYPE MC_BufferMode :
(

MC Aborting,

MC Buffered,

MC BlendingLow,

MC BlendingPrevious,
MC BlendingNext,

MC BlendingHigh

)i

END TYPE

see also: BufferMode in the section on general rules for MC function blocks [P 14]

o A second function block is required to use the buffer mode. It is not possible to trigger a move block
with new parameters while it is active.

Examples:

In the following example, a move command is used to move an axis from position P, to P, and then to P,.
The second command is issued during the movement to P,, but before the braking ramp with different buffer
modes. The reference point for the different velocity profiles is always P,. The mode specifies the velocity v,
or v, at this point.

TX1200 Version: 1.3 103

Data types BEGKHOFF

f 3 Buffered

I

=z :
I

Ak :
I
I
I
I
I -

P Pl P2
I
& BlendingLow or BlendingPrevious

I

. :
e

Ak 1
I
I
I
I
' .

pll] F:1 2

I

A BlendingHigh or BlendingMext

L 3

=k

[=]

P
Since the speed of the first command is lower than the second, the modes BlendingLow/BlendingPrevious
and BlendingHigh/BlendingNext have the same result.

Po 2

L

The difference in the next example is that the speed of the second command is lower than the first. Now, the
modes BlendingLow/BlendingNext and BlendingHigh/BlendingPrevious are equivalent.

104 Version: 1.3 TX1200

BEGKHOFF Data types

f 3 Buffered

L J

Py Py P2

& BlendingLow or BlendingMNext

o \i

o]

L

Pa Py P
I

A BlendingHigh or BlendingPrevious
I

4 :
.

Vo |

L 3

Po Py Pz
|

The velocity profiles described here assume that the following command is issued in time, i.e. before the
braking ramp of the first command. Otherwise, blending is implemented as best as possible.

8.2.2 Data type MC_Direction

TYPE MC Direction :

(

MC Positive Direction := 1,
MC_Shortest_Way ,

MC Negative Direction,

MC Current Direction

)i

END TYPE

This listing type contains the possible directions of travel for the function blocks MC MoveVelocity [P 72] and
MC MoveModulo [P 64].

TX1200 Version: 1.3 105

Data types BEGKHOFF

8.2.3 Data type MC_HomingMode

The data type MC_HomingMode is used for parameterizing the function block MC Home [P _88]

TYPE MC HomingMode :
(

MC DefaultHoming, (* default homing as defined in the SystemManager encoder parameters *)

MC AbsSwitch, (* not implemented - Absolute Switch homing plus Limit switches *)

MC LimitSwitch, (* not implemented - Homing against Limit switches *)

MC RefPulse, (* not implemented - Homing using encoder Reference Pulse "Zero Mark" *)

MC Direct, (* Static Homing forcing position from user reference *)

MC Absolute, (* not implemented - Static Homing forcing position from absolute encoder *)
MC Block, (* not implemented - Homing against hardware parts blocking movement *)

MC ForceCalibration, (* set the calibration flag without perfomring any motion or changing the
position ¥*)

MC ResetCalibration (* resets the calibration flag without perfomring any motion or changing the
position *)

)

END TYPE

8.2.4 Data type E_SuperpositionMode

TYPE E SuperpositionMode :

(

SUPERPOSITIONMODE VELOREDUCTION ADDITIVEMOTION := 1,
SUPERPOSITIONMODE VELOREDUCTION LIMITEDMOTION,
SUPERPOSITIONMODE LENGTHREDUCTION ADDITIVEMOTION,
SUPERPOSITIONMODE LENGTHREDUCTION LIMITEDMOTION,

SUPERPOSITIONMODE ACCREDUCTION ADDITIVEMOTION, (* from TwinCAT 2.11 %)
SUPERPOSITIONMODE ACCREDUCTION LIMITEDMOTION (* from TwinCAT 2.11 %)
);

END TYPE

E_SuperpositionMode determines how a superimposed motion is carried out with the function block
MC MoveSuperimposed [»_82].

The modes referred to as Veloreduction execute a superimposed movement with minimum velocity change,
preferentially over the full parameterized compensation section. Conversely, the modes referred to as
Lengthreduction use the maximum possible velocity and therefore reduce the required distance. In both
cases same distance is compensated.

In cases referred to as Additivemotion, the superimposed axis executes a longer or shorter movement than
indicated by Length, with the difference described by Distance. These modes are used, for example, if the
Length parameter refers to a reference axis and the superimposed axis may move by a longer or shorter
distance in comparison.

In cases referred to as Limitedmotion, the superposition is completed within the parameterized distance.
These modes are used, for example, if the Length parameter refers to the superimposed axis itself. With
these modes it should be noted that the superimposed Distance must be significantly shorter than the
available Length.

SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION:

The superimposed motion takes place over the whole Length. The specified maximum change in velocity
VelocityDiff is reduced in order to reach the required Distance over this length.

The Length is based on a reference axis without superimposed motion (e.g. master axis). The travel path of
the axis affected by this compensation is Length + Distance.

SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION:

The superimposed motion takes place over the whole Length. The specified maximum change in velocity
VelocityDiff is reduced in order to reach the required Distance over this length.

The Length refers to the axis affected by the compensation. During compensation, the travel path of this axis
is Length.

SUPERPOSITIONMODE_LENGTHREDUCTION_ADDITIVEMOTION:

106 Version: 1.3 TX1200

BEGKHOFF Data types

The distance of the superimposed motion is as short as possible and the speed is as high as possible.
Although neither the maximum velocity change VelocityDiff or the maximum Length are exceeded.

The Length is based on a reference axis without superimposed motion (e.g. master axis). The maximum
travel path of the axis affected by this compensation is Length + Distance.

SUPERPOSITIONMODE_LENGTHREDUCTION_LIMITEDMOTION:

The distance of the superimposed motion is as short as possible and the speed is as high as possible.
Although neither the maximum velocity change VelocityDiff or the maximum Length are exceeded.

The Length refers to the axis affected by the compensation. During compensation, the maximum travel path
of this axis is Length.

SUPERPOSITIONMODE_ACCREDUCTION_ADDITIVEMOTION (from TwinCAT 2.11)

The superimposed motion takes place over the whole Length. The specified maximum acceleration
(parameter Acceleration or Deceleration) is reduced as far as possible, in order to reach the specified
Distance on this path.

The Length is based on a reference axis without superimposed motion (e.g. master axis). The travel path of
the axis affected by this compensation is Length + Distance.

SUPERPOSITIONMODE_ACCREDUCTION_LIMITEDMOTION (from TwinCAT 2.11)

The superimposed motion takes place over the whole Length. The specified maximum acceleration
(parameter Acceleration or Deceleration) is reduced as far as possible, in order to reach the specified
Distance on this path.

The Length refers to the axis affected by the compensation. During compensation, the travel path of this axis
is Length.

8.2.5 Data typeST_SuperpositionOptions

TYPE ST SuperpositionOptions :

STRUCT

AbortOption : E SuperpositionAbortOption;
END_STRUCT

END TYPE

TYPE E_SuperpositionAbortOption :

(

SUPERPOSITIONOPTION ABORTATSTANDSTILL := O,
SUPERPOSITIONOPTION RESUMEAFTERSTANDSTILL,
SUPERPOSITIONOPTION RESUMEAFTERMOTIONSTOP
)

END TYPE

AbortOption

AbortOption is an optional parameter of the MC MoveSuperimposed [P _82] block that specifies the behavior
of a superimposed movement in the case of a standstill of the main movement.

SUPERPOSITIONOPTION_ABORTATSTANDSTILL:

The superimposed movement is aborted as soon as the subordinate movement leads to a standstill of the
axis. The only exception to this is a standstill caused by a speed override of zero. In this case the
superimposed movement is also continued as soon as the override is not equal to zero. AbortAtStandstill is
the standard behavior if the option is not assigned by the user.

SUPERPOSITIONOPTION_RESUMEAFTERSTANDSTILL:

The superimposed movement is not aborted in the case of a temporary standstill of the main movement, but
is continued as soon as the axis moves again. This can occur in particular in the case of a reversal of
direction or with cam disc movements. The superimposed movement is terminated only if the target position
of the axis has been reached or the axis has been stopped.

SUPERPOSITIONOPTION_RESUMEAFTERMOTIONSTOP:

TX1200 Version: 1.3 107

Data types

BECKHOFF

The superimposed movement is not aborted in the case of a standstill of the main movement, even if the
axis has reached its target position or has been stopped. In this case, the superimposed movement is
continued after the axis restarts.

This case is not of importance if the superimposed movement is applied to a slave axis, since this cannot be
started or stopped actively. In the case of slave axes, the modes of operation RESUMEAFTERSTANDSTILL
and RESUMEAFTERMOQOTIONSTOR are equivalent. The superimposed movement would thus also be

continued after a restart of the master axis.

Table 1: Overview of the abort conditions for a superimposed movement (MC_MoveSuperimposed)

axes: Uncoupling

ABORTATSTANDSTILL RESUMEAFTERSTAND- RESUMEAFTERMO-
STILL TIONSTOP

1. Override = 0% continued continued continued
2. Temporary standstill of |Abort continued continued
the main movement
3. Movement reversal Abort continued continued
4. Axis has reached the |Abort Abort continued
target position or is
stopped
5. Axis reset or switch-off |Abort Abort Abort
of the enable signal
6. In the case of slave Abort Abort Abort

8.2.6

Data type E_JogMode

The data type E_JogMode is used in conjunction with the function block MC Jog [P 91].

TYPE E_JogMode :

(

MC JOGMODE_STANDARD SLOW,
MC_JOGMODE_STANDARD FAST,
MC_JOGMODE_CONTINOUS,
dynamics *)

MC JOGMODE INCHING,
MC_JOGMODE_INCHING MODULO
to the distance value *)
)i

END TYPE

(*
(*

(*
(*

8.3 Status and parameter

8.3.1

Data type E_ReadMode

axis moves for a certain relative distance *)
axis moves for a certain relative distance - stop position is rounded

motion with standard jog parameters for slow motion ¥*)
motion with standard jog parameters for fast motion ¥*)
axis moves as long as the jog button is pressed using parameterized

The data type E_ReadMode is used in conjunction with the function blocks MC ReadBoolParameter [P 27]
and MC ReadBoolParameter [P 26] to specify one-off or cyclic mode.

TYPE E_ReadMode :
(

READMODE ONCE :=
READMODE CYCLIC
)

END_TYPE

1’

108

Version: 1.3

TX1200

BECKHOFF

Data types

8.3.2 Data type ST_AxisStatus

The data type ST _AxisStatus contains comprehensive status information for an axis. The data structure
must be updated during each PLC cycle by calling MC ReadStatus [»_30] or by calling the action

Axis.ReadStatus (AXIS REF [»_101]).

TYPE ST AxisStatus
STRUCT
UpdateTaskIndex : BYTE

CycleCounter
NcCycleCounter
structures ¥*)

MotionState

Error
ErrorId

’

UpdateCycleTime : LREAL;

(* Task-Index of the task that updated this data set *)

(* task cycle time of the task which calls the status function *)

UDINT; (* PLC cycle counter when this data set updated *)

UDINT; (* NC cycle counter incremented after NC task updated NcToPlc data

MC AxisStates; (* motion state in the PLCopen state diagram ¥*)

BOOL; (* axis error state *)
UDINT; (* axis error code ¥*)

(* PLCopen motion control statemachine states: *)

ErrorStop

Disabled

Stopping
StandStill
DiscreteMotion
ContinuousMotion
SynchronizedMotion
Homing

(* additional status -
ConstantVelocity
Accelerating
Decelerating

BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;

BOOL;
BOOL;
BOOL;

(* Axis.NcToPlc.StateDWord *)

Operational
ControlLoopClosed
HasJob
HasBeenStopped
NewTargetPosition
InPositionArea
InTargetPosition
Protected

Homed

HomingBusy
MotionCommandsLocked
SoftLimitMinExceeded
SoftLimitMaxExceeded

Moving
PositiveDirection
NegativeDirection
NotMoving
Compensating

ExtSetPointGenEnabled
Externallatchvalid
CamDataQueued
CamTableQueued
CamScalingPending
CmdBuffered

PTPmode
DriveDeviceError
IoDataInvalid

BOOL;
BOOL; (*
BOOL;
BOOL;
BOOL; (*
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL; (*
BOOL; (*
BOOL; (*

BOOL;
BOOL;
BOOL;
BOOL;
BOOL; (*

BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;

(* Axis.NcToPlc.CoupleState *)

Coupled

BOOL;

(PLCopen definition) *)

operational and position control active *)

new target position commanded during move ¥*)

stop 'n hold *)
reverse soft travel limit exceeded *)
forward soft travel limit exceeded *)

superposition - overlayed motion *)

(* axis operation mode feedback from NcToPlc ¥*)
ST AxisOpModes;

OpMode
END STRUCT
END TYPE

ST AxisOpModes [»_113] MC AxisStates [113]

TX1200

Version: 1.3

109

Data types

BECKHOFF

8.3.3 Data type MC_AxisParameter

The MC_AxisParameter data type is used in conjunction with function blocks for reading and writing of axis

parameters.

TYPE MC AxisParameter : (
(* PLCopen specific parameters *)
CommandedPosition := 1,
SWLimitPos,

SWLimitNeg,
EnableLimitPos,
EnablelLimitNeg,
EnablePosLagMonitoring,
MaxPositionLag,
MaxVelocitySystem,
MaxVelocityAppl,
ActualVelocity,
CommandedVelocity,
MaxAccelerationSystem,
MaxAccelerationAppl,
MaxDecelerationSystem,
MaxDecelerationAppl,
MaxJerkSystem,
MaxJerkAppl,

(* Beckhoff specific parameters *)

AxisId := 1000,
AxisVeloManSlow,
AxisVeloManFast,
AxisVeloMax,

AxisAcc,

AxisDec,

AxisdJderk,

MaxJerk,

AxisMaxVelocity,
AxisRapidTraverseVelocity,
AxisManualVelocityFast,
AxisManualVelocitySlow,
AxisCalibrationVelocityForward,
AxisCalibrationVelocityBackward,
AxisJogIncrementForward,
AxisJogIncrementBackward,
AxisEnMinSoftPosLimit,
AxisMinSoftPosLimit,
AxisEnMaxSoftPosLimit,
AxisMaxSoftPosLimit,
AxisEnPositionLagMonitoring,
AxisMaxPosLagValue,
AxisMaxPosLagFilterTime,
AxisEnPositionRangeMonitoring,
AxisPositionRangeWindow,
AxisEnTargetPositionMonitoring,
AxisTargetPositionWindow,
AxisTargetPositionMonitoringTime,
AxisEnInTargetTimeout,
AxisInTargetTimeout,
AxisEnMotionMonitoring,
AxisMotionMonitoringWindow,
AxisMotionMonitoringTime,
AxisDelayTimeVeloPosition,
AxisEnLoopingDistance,
AxisLoopingDistance,
AxisEnBacklashCompensation,
AxisBacklash,
AxisEnDataPersistence,
AxisRefVeloOnRefOutput,
AxisOverrideType,

(* new since 4/2007 *)
AxisEncoderScalingFactor,
AxisEncoderOffset,
AxisEncoderDirectionInverse,
AxisEncoderMask,
AxisEncoderModuloValue,
AxisModuloToleranceWindow,
AxisEnablePosCorrection,
AxisPosCorrectionFilterTime,
(* new since 1/2010 *)
AxisUnitInterpretation,

(* Index-Group 0x4000 + ID*)

(* lreal *) (* taken from NcToPlc *)

(* lreal *) (* IndexOffset= 16#0001 O00E
(* lreal *) (* IndexOffset= 16#0001 000D
(* bool *) (* IndexOffset= 16#0001_ 000C
(* bool *) (* IndexOffset= 16#0001 000B
(* bool *) (* IndexOffset= 16#0002 0010
(* lreal *) (* IndexOffset= 16#0002 0012
(* lreal *) (* IndexOffset= 16#0000_ 0027
(* lreal *) (* IndexOffset= 16#0000 0027
(* lreal *) (* taken from NcToPlc *)

(* lreal *) (* taken from NcToPlc *)

(* lreal *) (* IndexOffset= 16#0000 0101
(* lreal *) (* IndexOffset= 16#0000 0101
(* lreal *) (* IndexOffset= 16#0000 0102
(* lreal *) (* IndexOffset= 16#0000 0102
(* lreal *) (* IndexOffset= 16#0000 0103
(* lreal *) (* IndexOffset= 16#0000 0103

(* Index-Group 0x4000 + ID*)

(* lreal *) (* IndexOffset= 16#0000_ 0001
(* lreal *) (* IndexOffset= 16#0000 0008
(* lreal *) (* IndexOffset= 16#0000 0009
(* lreal *) (* IndexOffset= 16#0000_ 0027
(* lreal *) (* IndexOffset= 16#0000 0101
(* lreal *) (* IndexOffset= 16#0000 0102
(* lreal *) (* IndexOffset= 16#0000 0103
(* lreal *) (* IndexOffset= 16#0000 0103
(* lreal *) (* IndexOffset= 16#0000_ 0027
(* lreal *) (* IndexOffset= 16#0000_000A
(* lreal *) (* IndexOffset= 16#0000 0009
(* lreal *) (* IndexOffset= 16#0000 0008
(* lreal *) (* IndexOffset= 16#0000_0006
(* lreal *) (* IndexOffset= 16#0000_0007
(* lreal *) (* IndexOffset= 16#0000 0018
(* lreal *) (* IndexOffset= 16#0000 0019
(* bool *) (* IndexOffset= 16#0001 000B
(* lreal *) (* IndexOffset= 16#0001 000D
(* bool *) (* IndexOffset= 16#0001_000C
(* lreal *) (* IndexOffset= 16#0001 O000E
(* bool *) (* IndexOffset= 16#0002 0010
(* lreal *) (* IndexOffset= 16#0002 0012
(* lreal *) (* IndexOffset= 16#0002_ 0013
(* bool *) (* IndexOffset= 16#0000 000F
(* lreal *) (* IndexOffset= 16#0000_ 0010
(* bool *) (* IndexOffset= 16#0000_ 0015
(* lreal *) (* IndexOffset= 16#0000 0016
(* lreal *) (* IndexOffset= 16#0000 0017
(* bool *) (* IndexOffset= 16#0000 0029
(* lreal *) (* IndexOffset= 16#0000 002A
(* bool *) (* IndexOffset= 16#0000 0011
(* lreal *) (* IndexOffset= 16#0000 0028
(* lreal *) (* IndexOffset= 16#0000 0012
(* lreal *) (* IndexOffset= 16#0000 0104
(* bool *) (* IndexOffset= 16#0000_0013
(* lreal *) (* IndexOffset= 16#0000 0014
(* bool *) (* IndexOffset= 16#0000_ 002B
(* lreal *) (* IndexOffset= 16#0000_002C
(* bool *) (* IndexOffset= 16#0000 0030
(* lreal *) (* IndexOffset= 16#0003 0101
(* lreal *) (* IndexOffset= 16#0000 0105

(* lreal *) (* IndexOffset= 16#0001 0006
(* lreal *) (* IndexOffset= 16#0001 0007
(* bool *) (* IndexOffset= 16#0001 0008
(* dword *) (* IndexOffset= 16#0001 0015
(* lreal *) (* IndexOffset= 16#0001 0009
(* lreal *) (* IndexOffset= 16#0001_ 001B
(* bool *) (* IndexOffset= 16#0001 0016
(* lreal *) (* IndexOffset= 16#0001 0017

(* lreal *) (* IndexOffset= 16#0000 0026

*)

*)

110

Version: 1.3

TX1200

BEGKHOFF Data types

AxisMotorDirectionInverse, (* bool *) (* IndexOffset= 16#0003 0006 *)
(* new since 1/2011 *)

AxisCycleTime, (* lreal *) (* IndexOffset= 16#0000_0004 *)
(* new since 5/2011 *)

AxisFastStopSignalType, (* dword *) (* IndexOffset= 16#0000 O001lE *)
AxisFastAcc, (* lreal *) (* IndexOffset= 16#0000 010A *)
AxisFastDec, (* lreal *) (* IndexOffset= 16#0000 _010B *)
AxisFastJerk, (* lreal *) (* IndexOffset= 16#0000 010C *)

(* Beckhoff specific axis status information - READ ONLY *) (* Index-Group 0x4100 + ID¥*)

AxisTargetPosition := 2000, (* lreal *) (* IndexOffset= 16#0000 0013 *)
AxisRemainingTimeToGo, (* lreal *) (* IndexOffset= 16#0000_0014 *)
AxisRemainingDistanceToGo, (* lreal *) (* IndexOffset= 16#0000 0022, 16#0000 0042 *)

(* Beckhoff specific axis functions *)

(* read/write gear ratio of a slave *)

AxisGearRatio := 3000, (* lreal *) (* read: IndexGroup=0x4100+ID, IdxOffset=16#0000 0022,
*)

(* write:IndexGroup=0x4200+ID, IdxOffset=16#0000_0042 *)

(* Beckhoff specific other parameters *)
(* new since 1/2011 *)

NcSafCycleTime := 4000, (* lreal *) (* IndexOffset= 16#0000 0010 *)
NcSvbCycleTime (* lreal *) (* IndexOffset= 16#0000_ 0012 *)
)i
END TYPE

o

The AxisGearRatio parameter can only be read or written if the axis is coupled as a slave. During
1 the motion only very small changes are allowed.

8.3.4 Data type ST_PowerStepperStruct

TYPE ST PowerStepperStruct

STRUCT

DestallDetectMode : E DestallDetectMode;
DestallMode : E DestallMode;
DestallEnable : BOOL;

StatusMonEnable : BOOL;

Retries : INT;

Timeout : TIME;

END_STRUCT

END TYPE

8.3.5 Data type ST_DriveAddress

The data type ST _DriveAddress contains the ADS access data for a drive unit. The data are read with
MC ReadDriveAddress [P 55].

TYPE ST DriveAddress

STRUCT

NetID : T AmsNetId; (* AMS NetID of the drive as a string ¥*)

NetIdBytes : T AmsNetIdArr; (* AMS NetID of the drive as a byte array (same information as NetID)
*)

SlaveAddress : T AmsPort; (* slave address of the drive connected to a bus master ¥*)

Channel : BYTE; (* EtherCAT channel number of the drive (0, 1, 2, 3, 4.) *)

END_ STRUCT

END_TYPE

8.3.6 Data type ST_AxisParameterSet

The data type ST_AxisParameterSet contains the whole parameter dataset of an axis that can be read with
the function block MC ReadParameterSet [» 29].

Individual parameters that can be changed at runtime can be written with MC WriteParameter [P 33]. It is not
possible to write back the parameter dataset.

TX1200 Version: 1.3 111

Data types BEGKHOFF

The individual parameters are described in the NC ADS documentation.

TYPE ST AxisParameterSet

STRUCT

(* AXIS: *)

AxisId : DWORD; (* 0x00000001 *)
sAxisName : STRING (31); (* 0x00000002 *)
nAxisType : DWORD; (* 0x00000003 *)
bEnablePositionAreaControl : WORD; (* 0x0000000F *)
fPositionAreaControlRange : LREAL; (* 0x00000010 *)
bEnableMotionControl : WORD; (* 0x00000011 *)
fMotionControlTime : LREAL; (* 0x00000012 *)
bEnableLoop : WORD; (* 0x00000013 *)
fLoopDistance : LREAL; (* 0x00000014 *)
bEnableTargetPosControl : WORD; (* 0x00000015 *)
fTargetPosControlRange : LREAL; (* 0x00000016 *)
fTargetPosControlTime : LREAL; (* 0x00000017 *)
fveloMaximum : LREAL; (* 0x00000027 *)
fMotionControlRange : LREAL; (* 0x00000028 *)
bEnablePEHTimeControl : WORD; (* 0x00000029 =*)
fPEHControlTime : LREAL; (* 0x0000002A *)
bEnableBacklashCompensation : WORD; (* 0x0000002B *)
fBacklash : LREAL; (* 0x0000002C *)
sAmsNetId : T AmsNetId; (* 0x00000031 *)
nPort : WORD; (* 0x00000031 *)
nChnNo : WORD; (* 0x00000031 *)
fAcceleration : LREAL; (* 0x00000101 *)
fDeceleration : LREAL; (* 0x00000102 =*)
fJerk : LREAL; (* 0x00000103 *)

(* ENCODER: *)

nEncId : DWORD; (* 0x00010001 =*)
sEncName : STRING(31); (* 0x00010002 *)
nEncType : DWORD; (* 0x00010003 *)
fEncScaleFactor : LREAL; (* 0x00010006 *)
fEncOffset : LREAL; (* 0x00010007 *)
bEncIsInverse : WORD; (* 0x00010008 *)
fEncModuloFactor : LREAL; (* 0x00010009 *)
nEncMode : DWORD; (* 0x0001000A *)
bEncEnableSoftEndMinControl : WORD; (* 0x0001000B *)
bEncEnableSoftEndMaxControl : WORD; (* 0x0001000C *)
fEncSoftEndMin : LREAL; (* 0x0001000D *)
fEncSoftEndMax : LREAL; (* 0x0001000E *)
nEncMaxIncrement : DWORD; (* 0x00010015 *)
bEncEnablePosCorrection : WORD; (* 0x00010016 *)
fEncPosCorrectionFilterTime : LREAL; (* 0x00010017 *)

(* CONTROLLER: ¥*)

nCtrlId : DWORD; (* 0x00020001 =*)
sCtrlName : STRING(31); (* 0x00020002 *)
nCtrlType : DWORD; (* 0x00020003 *)
bCtrlEnablePosDiffControl : WORD; (* 0x00020010 *)
bCtrlEnableVeloDiffControl : WORD; (* 0x00020011 *)
fCtrlPosDiffMax : LREAL; (* 0x00020012 *)
fCtrlPosDiffMaxTime : LREAL; (* 0x00020013 *)
fCtrlPosKp : LREAL; (* 0x00020102 *)
fCtrlPosTn : LREAL; (* 0x00020103 *)
fCtrlPosTv : LREAL; (* 0x00020104 *)
fCtrlPosTd : LREAL; (* 0x00020105 *)
fCtrlPosExtKp : LREAL; (* 0x00020106 *)
fCtrlPosExtVelo : LREAL; (* 0x00020107 *)
fCtrlAccKa : LREAL; (* 0x00020108 *)

(* DRIVE: ¥*)

nDriveId : DWORD; (* 0x00030001 *)
sDriveName : STRING(31); (* 0x00030002 *)
nDriveType : DWORD; (* 0x00030003 *)
bDrivelIsInverse : WORD; (* 0x00030006 *)
fDriveVeloReferenz : LREAL; (* 0x00030101 *)
fDriveOutputReferenz : LREAL; (* 0x00030102 *)

(* miscellaneous *)
fAxisCycleTime : LREAL; (* 0x00000004 *) (* available from Tc 2.11 R2 *)

(* 17.05.11: parameter extension *)

fRefVeloSearch : LREAL; (* 0x00000006 calibration velo (TO plc cam) *)
fRefVeloSync : LREAL; (* 0x00000007 calibration velo (off plc cam) *)
fveloSlowManual : LREAL; (* 0x00000008 manual velocity (slow) ¥*)
fVeloFastManual : LREAL; (* 0x00000009 manual velocity (fast) ¥*)

112 Version: 1.3 TX1200

https://infosys.beckhoff.com/content/1033/tcadscommon/1255079179.html

BEGKHOFF Data types

(* ENCODER (incremental): *)

bEncRefSearchInverse : UINT; (* 0x00010101 *)
bEncRefSyncInverse : UINT; (* 0x00010102 *)
nEncRefMode : UDINT; (* 0x00010107 *)
fEncRefPosition : LREAL; (* 0x00010103 *)

(* £ill up *)

arrReserved : ARRAY([511..512] OF BYTE; (* fill up to 512 bytes *)
END STRUCT

END TYPE

8.3.7 Data type ST_AxisOpModes

The data type ST_AxisOpModes contains information about the operating mode parameterization of an axis.

TYPE ST AxisOpModes

STRUCT

PositionAreaMonitoring : BOOL; (* bit 0 - OpModeDWord *)

TargetPositionMonitoring: BOOL; (* bit 1 - OpModeDWord *)

LoopMode : BOOL; (* bit 2 - OpModeDWord - loop mode for two speed axes *)
MotionMonitoring : BOOL; (* bit 3 - OpModeDWord *)

PEHTimeMonitoring : BOOL; (* bit 4 - OpModeDWord *)

BacklashCompensation : BOOL; (* bit 5 - OpModeDWord *)

Modulo : BOOL; (* bit 7 - OpModeDWord - axis is parameterized as modulo axis *)
PositionLagMonitoring : BOOL; (* bit 16 - OpModeDWord *)

VelocityLagMonitoring : BOOL; (* bit 17 - OpModeDWord *)

SoftLimitMinMonitoring : BOOL; (* bit 18 - OpModeDWord *)

SoftLimitMaxMonitoring : BOOL; (* bit 19 - OpModeDWord *)

PositionCorrection : BOOL; (* bit 20 - OpModeDWord *)

END_ STRUCT

END TYPE

8.3.8 Data type E_AxisPositionCorrectionMode

TYPE E PositionCorrectionMode:

(

POSITIONCORRECTION MODE UNLIMITED, (* no limitation - pass correction immediately ¥*)
POSITIONCORRECTION MODE FAST, (* limitatation to maximum position change per cycle *)
POSITIONCORRECTION MODE FULLLENGTH (* limitation uses full length to adapt to correction in small
steps *)

)i

END TYPE

POSITIONCORRECTION_MODE_UNLIMITED No filtering, the correction is executed immediately.
Note that large changes in the correction value can
lead to high accelerations.

POSITIONCORRECTION_MODE_FAST The position correction is limited to the extent that a
maximum acceleration is not exceeded. However, the
correction is completely executed as fast as possible.

POSITIONCORRECTION_MODE_FULLLENGTH The position correction is accomplished distributed
over a distance of the axis (CorrectionLength). This
results in smaller changes per time unit.

8.3.9 Data type MC_AXxisStates
The data type MC_AxisStates describes the operating states according to the PlcOpen state diagram [P _11].

TYPE MC AxisStates

(

MC AXISSTATE UNDEFINED,

MC AXISSTATE DISABLED,

MC AXISSTATE STANDSTILL,
MC_AXISSTATE_ERRORSTOP,
MC_AXISSTATE_ STOPPING,

MC AXISSTATE HOMING,

MC AXISSTATE DISCRETEMOTION,
MC_AXISSTATE CONTINOUSMOTION,
MC_AXISSTATE_SYNCHRONIZEDMOTION

TX1200 Version: 1.3 113

Data types BEGKHOFF

) ;
END TYPE

See also: General rules for MC function blocks [P_14]

8.4 Touch probe

8.4.1 Data type TRIGGER_REF

TYPE TRIGGER REF

STRUCT

EncoderID : UDINT; (= 1,,255 %)

TouchProbe : E_TouchProbe; (* probe unit definition *)

SignalSource : E SignalSource; (* optional physical signal source used by the probe unit

- available from TwinCAT 2.11 Build 2022 with
MC TouchProbe V2 *)
Edge : E_SignalEdge; (* rising or falling signal edge *)
Mode : E TouchProbeMode; (* single shot or continuous monitoring

- available from TwinCAT 2.11 Build 2022 with
MC TouchProbe V2 *)

PlcEvent : BOOL; (* PLC trigger signal input when TouchProbe signal source is
set to 'PlcEvent' ¥*)

ModuloPositions : BOOL; (* interpretation of FirstPosition, LastPosition and
RecordedPosition as modulo positions when TRUE *)

END_STRUCT

END TYPE

EncoderlID: The ID of an encoder is indicated in the TwinCAT System Manager.

TouchProbe : Defines the latch unit (probe unit) within the encoder hardware used.

TYPE E TouchProbe
(

TouchProbel := 1, (* 1lst hardware probe unit with Sercos, CanOpen, KL5xxx and others *)
TouchProbe2, (* 2nd probe unit - available from MC TouchProbe V2 00 *)
TouchProbe3, (* currently not available *)

TouchProbe4, (* currently not available *)

PlcEvent := 10 (* simple PLC signal TRUE/FALSE *)

)i

END TYPE

SignalSource: Optionally defines the signal source, if it can be selected via the controller. In many cases the
signal source is permanently configured in the drive and should then be set to the default value

SignalSource_Default. (setting possibility only available from MC TouchProbe V2 [P 37])

TYPE E_SignalSource
(

SignalSource Default, (* undefined or externally configured ¥*)

SignalSource Inputl, (* digital drive input 1 *)

SignalSource Input2, (* digital drive input 2 *)

SignalSource Input3, (* digital drive input 3 *)

SignalSource Input4, (* digital drive input 4 *)

SignalSource ZeroPulse := 128, (* encoder zero pulse ¥*)

SignalSource DriveDefined (* defined by drive parameters - e. g. CAN object 0x60D0 *)
)

END TYPE

Edge : Defines whether the rising or falling edge of the trigger signal is evaluated.

TYPE E_SignalEdge
(

RisingEdge,
FallingEdge

)7

END TYPE

114 Version: 1.3 TX1200

BEGKHOFF Data types

Mode: Specifies the operating mode of the latch unit. In single mode only the first edge is sampled. In
continuous mode each PLC cycle edge is signaled. (Mode only available with MC TouchProbe V2 [P 37])

TYPE E TouchProbeMode :
(

TOUCHPROBEMODE SINGLE COMPATIBILITYMODE, (* for TwinCAT 2.10 and 2.11 before Build 2022 - for use
with MC TouchProbe as well *)

TOUCHPROBEMODE SINGLE, (* multi probe interface - from 2.11 Build 2022 *)
TOUCHPROBEMODE, CONTINOUS (* multi probe interface - from 2.11 Build 2022 *)

)i

END TYPE

PlcEvent : If the signal source TouchProbe is set to the type PlcEvent, a rising edge on these variables
triggers the recording of the current axis position. The PIcEvent is not a true latch function, but is cycle-time
dependent.

ModuloPositions: If the variable ModuloPositions is FALSE, the axis position is interpreted in an absolute
linear range from -« to +. The positions FirstPosition, LastPosition und RecordedPosition of the

MC TouchProbe [» 34] or MC TouchProbe V2 [» 37] function block are then also absolute.

If ModuloPositions is TRUE, all positions are interpreted as modulo values in the modulo range of the axis
used (e.g. 0..359.9999). At the same time this means that a defined trigger window repeats itself cyclically.

8.4.2 Data type MC_TouchProbeRecordedData

TYPE MC TouchProbeRecordedData :

STRUCT
Counter : LREAL;
RecordedPosition : LREAL;
AbsolutePosition : LREAL;
ModuloPosition : LREAL;

END_STRUCT

END TYPE

Counter: counter indicating how many valid edges were detected in the last cycle. Detection of multiple
edges is only implemented in mode TOUCHPROBEMODE_CONTINUOUS under SERCOS / SOE and must
be supported explicitly by the hardware (e.g. AX5000).

RecordedPosition: one or more detected axis positions at the time of the trigger signal. This corresponds to
the absolute axis position or the modulo axis position, depending on the parameterization.

AbsolutePosition: absolute axis position detected at the time of the trigger signal.

ModuloPosition: modulo axis position recorded at the time of the trigger signal.

8.5 External set value generator

8.5.1 Datentyp E_PositionType
TYPE E PositionType :

(

POSITIONTYPE ABSOLUTE := 1, (* Absolute position ¥*)
POSITIONTYPE RELATIVE, (* Relative position *)

POSITIONTYPE MODULO
)
END TYPE

5 (* Modulo position *)

TX1200 Version: 1.3 115

Example programs BEGKHOFF

9 Example programs

9.1 Sample Programs

PTP - point to point movement

The example program manages and moves an axis in PTP mode. The axis is moved with two instances of
an MC_MoveAbsolute function block in queued mode over several intermediate positions and velocity levels.

The example program requires the TcMC2.lib library and operates fully in simulation mode. Progress can be
monitored in TwinCAT Scope View with the configuration provided.

Click here to save the example program:

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458496267/.zip

Master-Slave coupling

The example program couples two axes and moves them together. The slave axis is uncoupled and
positioned during the journey.

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458499211/.zip

Dancer control

The dancer control example program shows how the speed of a slave axis can be controlled using the
position of a dancer.

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458502155/.zip

Superimposed movement (Superposition)
The example shows the overlay of a movement while an axis is driving.

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458505099/.zip

116 Version: 1.3 TX1200

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458496267.zip
https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458499211.zip
https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458502155.zip
https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458505099.zip

More Information:
www.beckhoff.com/tx1200

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TX1200
https://www.beckhoff.com
https://www.beckhoff.com/tx1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 State diagram
	4 General rules for MC function blocks
	5 Migration from TcMC to TcMC2
	6 Organisation function blocks
	6.1 Axis functions
	6.1.1 MC_Power
	6.1.2 MC_Reset
	6.1.3 MC_SetPosition

	6.2 Status and parameter
	6.2.1 MC_ReadActualVelocity
	6.2.2 MC_ReadActualPosition
	6.2.3 MC_ReadAxisComponents
	6.2.4 MC_ReadAxisError
	6.2.5 MC_ReadBoolParameter
	6.2.6 MC_ReadParameter
	6.2.7 MC_ReadParameterSet
	6.2.8 MC_ReadStatus
	6.2.9 MC_WriteBoolParameter
	6.2.10 MC_WriteParameter

	6.3 Touch probe
	6.3.1 MC_TouchProbe
	6.3.2 MC_TouchProbe_V2
	6.3.3 MC_AbortTrigger
	6.3.4 MC_AbortTrigger_V2

	6.4 External set value generator
	6.4.1 MC_ExtSetPointGenEnable
	6.4.2 MC_ExtSetPointGenDisable
	6.4.3 MC_ExtSetPointGenFeed

	6.5 Special extensions
	6.5.1 MC_PowerStepper
	6.5.2 Notes on the MC_PowerStepper
	6.5.3 MC_OverrideFilter
	6.5.4 MC_SetOverride
	6.5.5 MC_SetEncoderScalingFactor
	6.5.6 MC_PositionCorrectionLimiter
	6.5.7 MC_ReadDriveAddress
	6.5.8 MC_SetAcceptBlockedDriveSignal

	7 Motion function blocks
	7.1 Point to point motion
	7.1.1 MC_MoveAbsolute
	7.1.2 MC_MoveRelative
	7.1.3 MC_MoveAdditive
	7.1.4 MC_MoveModulo
	7.1.5 Notes on modulo positioning
	7.1.6 MC_MoveVelocity
	7.1.7 MC_MoveContinuousAbsolute
	7.1.8 MC_MoveContinuousRelative
	7.1.9 MC_Halt
	7.1.10 MC_Stop

	7.2 Superposition
	7.2.1 MC_MoveSuperimposed
	7.2.2 Application examples for MC_MoveSuperimposed
	7.2.3 MC_AbortSuperposition

	7.3 Homing
	7.3.1 MC_Home

	7.4 Manual motion
	7.4.1 MC_Jog

	7.5 Axis coupling
	7.5.1 MC_GearIn
	7.5.2 MC_GearInDyn
	7.5.3 MC_GearOut
	7.5.4 MC_GearInMultiMaster

	8 Data types
	8.1 Axis interface
	8.1.1 Data type AXIS_REF
	8.1.2 Data type NCTOPLC_AXIS_REF
	8.1.3 Data type PLCTONC_AXIS_REF

	8.2 Motion function blocks
	8.2.1 Data type MC_BufferMode
	8.2.2 Data type MC_Direction
	8.2.3 Data type MC_HomingMode
	8.2.4 Data type E_SuperpositionMode
	8.2.5 Data typeST_SuperpositionOptions
	8.2.6 Data type E_JogMode

	8.3 Status and parameter
	8.3.1 Data type E_ReadMode
	8.3.2 Data type ST_AxisStatus
	8.3.3 Data type MC_AxisParameter
	8.3.4 Data type ST_PowerStepperStruct
	8.3.5 Data type ST_DriveAddress
	8.3.6 Data type ST_AxisParameterSet
	8.3.7 Data type ST_AxisOpModes
	8.3.8 Data type E_AxisPositionCorrectionMode
	8.3.9 Data type MC_AxisStates

	8.4 Touch probe
	8.4.1 Data type TRIGGER_REF
	8.4.2 Data type MC_TouchProbeRecordedData

	8.5 External set value generator
	8.5.1 Datentyp E_PositionType

	9 Example programs
	9.1 Sample Programs

		documentation@beckhoff.com
	2023-07-20T09:09:05+0200
	Beckhoff Automation, Verl
	Documentation Publishing

