
Manual | EN

TX1200
TwinCAT 2 | PLC Library: TcMC2

2023-07-20 | Version: 1.3

Table of contents

TX1200 3Version: 1.3

Table of contents
1 Foreword.. 7

1.1 Notes on the documentation ... 7
1.2 For your safety .. 8
1.3 Notes on information security.. 9

2 Overview .. 10

3 State diagram .. 11

4 General rules for MC function blocks ... 14

5 Migration from TcMC to TcMC2 ... 17

6 Organisation function blocks... 19
6.1 Axis functions .. 19

6.1.1 MC_Power ... 19
6.1.2 MC_Reset .. 20
6.1.3 MC_SetPosition ... 21

6.2 Status and parameter.. 23
6.2.1 MC_ReadActualVelocity .. 23
6.2.2 MC_ReadActualPosition .. 24
6.2.3 MC_ReadAxisComponents.. 24
6.2.4 MC_ReadAxisError .. 25
6.2.5 MC_ReadBoolParameter ... 26
6.2.6 MC_ReadParameter .. 27
6.2.7 MC_ReadParameterSet... 29
6.2.8 MC_ReadStatus... 30
6.2.9 MC_WriteBoolParameter ... 32
6.2.10 MC_WriteParameter .. 33

6.3 Touch probe .. 34
6.3.1 MC_TouchProbe .. 34
6.3.2 MC_TouchProbe_V2.. 37
6.3.3 MC_AbortTrigger.. 40
6.3.4 MC_AbortTrigger_V2 ... 41

6.4 External set value generator ... 42
6.4.1 MC_ExtSetPointGenEnable... 42
6.4.2 MC_ExtSetPointGenDisable .. 43
6.4.3 MC_ExtSetPointGenFeed.. 44

6.5 Special extensions .. 45
6.5.1 MC_PowerStepper... 45
6.5.2 Notes on the MC_PowerStepper ... 46
6.5.3 MC_OverrideFilter.. 51
6.5.4 MC_SetOverride .. 52
6.5.5 MC_SetEncoderScalingFactor... 53
6.5.6 MC_PositionCorrectionLimiter ... 54
6.5.7 MC_ReadDriveAddress ... 55
6.5.8 MC_SetAcceptBlockedDriveSignal .. 56

7 Motion function blocks... 58

Table of contents

TX12004 Version: 1.3

7.1 Point to point motion ... 58
7.1.1 MC_MoveAbsolute... 58
7.1.2 MC_MoveRelative.. 60
7.1.3 MC_MoveAdditive .. 62
7.1.4 MC_MoveModulo ... 64
7.1.5 Notes on modulo positioning.. 66
7.1.6 MC_MoveVelocity .. 72
7.1.7 MC_MoveContinuousAbsolute... 74
7.1.8 MC_MoveContinuousRelative.. 76
7.1.9 MC_Halt ... 78
7.1.10 MC_Stop .. 80

7.2 Superposition .. 82
7.2.1 MC_MoveSuperimposed.. 82
7.2.2 Application examples for MC_MoveSuperimposed ... 84
7.2.3 MC_AbortSuperposition ... 87

7.3 Homing.. 88
7.3.1 MC_Home.. 88

7.4 Manual motion... 91
7.4.1 MC_Jog.. 91

7.5 Axis coupling ... 93
7.5.1 MC_GearIn... 93
7.5.2 MC_GearInDyn .. 95
7.5.3 MC_GearOut.. 97
7.5.4 MC_GearInMultiMaster .. 98

8 Data types .. 101
8.1 Axis interface... 101

8.1.1 Data type AXIS_REF ... 101
8.1.2 Data type NCTOPLC_AXIS_REF .. 102
8.1.3 Data type PLCTONC_AXIS_REF .. 102

8.2 Motion function blocks .. 103
8.2.1 Data type MC_BufferMode... 103
8.2.2 Data type MC_Direction ... 105
8.2.3 Data type MC_HomingMode.. 106
8.2.4 Data type E_SuperpositionMode ... 106
8.2.5 Data typeST_SuperpositionOptions... 107
8.2.6 Data type E_JogMode.. 108

8.3 Status and parameter.. 108
8.3.1 Data type E_ReadMode... 108
8.3.2 Data type ST_AxisStatus ... 109
8.3.3 Data type MC_AxisParameter.. 110
8.3.4 Data type ST_PowerStepperStruct .. 111
8.3.5 Data type ST_DriveAddress... 111
8.3.6 Data type ST_AxisParameterSet ... 111
8.3.7 Data type ST_AxisOpModes.. 113
8.3.8 Data type E_AxisPositionCorrectionMode ... 113
8.3.9 Data type MC_AxisStates .. 113

Table of contents

TX1200 5Version: 1.3

8.4 Touch probe .. 114
8.4.1 Data type TRIGGER_REF ... 114
8.4.2 Data type MC_TouchProbeRecordedData .. 115

8.5 External set value generator ... 115
8.5.1 Datentyp E_PositionType... 115

9 Example programs.. 116
9.1 Sample Programs ... 116

Table of contents

TX12006 Version: 1.3

Foreword

TX1200 7Version: 1.3

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TX12008 Version: 1.3

1.2 For your safety
Safety regulations

Read the following explanations for your safety.
Always observe and follow product-specific safety instructions, which you may find at the appropriate places
in this document.

Exclusion of liability

All the components are supplied in particular hardware and software configurations which are appropriate for
the application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation, and drive technology who are
familiar with the applicable national standards.

Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to
persons and property, read and follow the safety and warning notices.

Personal injury warnings

 DANGER
Hazard with high risk of death or serious injury.

 WARNING
Hazard with medium risk of death or serious injury.

 CAUTION
There is a low-risk hazard that could result in medium or minor injury.

Warning of damage to property or environment

NOTICE
The environment, equipment, or data may be damaged.

Information on handling the product

This information includes, for example:
recommendations for action, assistance or further information on the product.

Foreword

TX1200 9Version: 1.3

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

TX120010 Version: 1.3

2 Overview
The TcMC2 TwinCAT motion control PLC library includes function blocks for programming machine
applications and represents a further development of the TcMC library. TcMC2 is based on the revised
PLCopen specification for motion control function blocks V2.0 (www.PLCopen.org).

Compatibility

The TcMC2 motion control library contains enhanced and new functions. The function blocks are better
adapted to the requirements of the PLCopen specification and are not compatible with the first version
(TCMC). Users who maintain existing projects are recommended to continue working in these projects with
the classic TcMC. TcMC2 should be used for new projects or for the revision of existing projects.

Main new features

A key feature of TcMC2 compared with TcMC is the so-called buffer mode. Buffer mode enables Move
commands to be queued in order to achieve a continuous positioning without intermediate stops. It enables
transition of two travel commands with a defined velocity at a certain position.

Move commands can be followed by further Move commands during execution. This makes adaptation of
target position or travel speed during the movement much easier.

TwinCAT Version

The TcMC2 library can be used with TwinCAT version 2.10 Build 1340 or higher. With remote programmed
controllers care must be taken that an appropriate version is installed on both the programmer PC and the
control PC. In the case of control systems with the operating system Windows CE, the version of the
installed image is decisive. A Windows CE image with version 3.08 or higher is required here.

http://www.plcopen.org/

State diagram

TX1200 11Version: 1.3

3 State diagram
The following state diagram defines the behavior of an axis in situations where several function blocks are
simultaneously active for this axis. The combination of several function blocks is useful for generating more
complex motion profiles or for dealing with exceptional situations during program execution.

State diagram

TX120012 Version: 1.3

Note 1 From any state in which an error occurs
Note 2 From any state if MC_Power.Enable = FALSE and

the axis has no error

State diagram

TX1200 13Version: 1.3

Note 3 MC_Reset and MC_Power.Status = FALSE
Note 4 MC_Reset and MC_Power.Status = TRUE and

MC_Power.Enable = TRUE
Note 5 MC_Power.Status = TRUE and MC_Power.Enable =

TRUE
Note 6 MC_Stop.Done= TRUE and MC_Stop.Execute =

FALSE

As a basic rule, travel commands are processed sequentially. All commands operate within this axis state
diagram.

The axis is always in one of the defined states. Motion commands resulting in a transition change the axis
state and, as a result, the motion profile. The state diagram is an abstraction layer that reflects the real axis
state, comparable to the process image for I/O points. The axis state changes immediately when the
command is issued.

The state diagram initially targets single axes. Multi-axis blocks such as MC_CamIn or MC_GearIn influence
the states of several axes, which can always be traced back to individual axis states of the axes involved in
the process. For example, a cam plate master can be in Continous Motion state, while the associated slave
is in Synchronized Motion state. Coupling of a slave has no influence on the state of the master.

The Disabled state is the default state of an axis. In this state can the axis cannot be moved through a
function block. If the MC_Power [} 19] block is called with Enable=TRUE, the axis changes to state
Standstill or, on error, ErrorStop. If MC_Power is called with Enable=FALSE, the state changes to Disabled

The purpose of status ErrorStop is to stop the axis and then block further commands, until a reset was
triggered. The Error state transition only refers to actual axis errors, not function block execution errors. Axis
errors may also be indicated at the error output of a function block.

Function blocks that are not listed in the state diagram have no influence on the axis state. (MC_ReadStatus;
MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter; MC_WriteParameter;
MC_WriteBoolParameter; MC_ReadActualPosition and MC_CamTableSelect.)

The Stopping state indicates that the axis is in a stop ramp. Once the axis has stopped the state changes to
StandStill.

Travel commands such as MC_MoveAbsolute that lead out of the Synchronized Motion state are possible
only if they are explicitly permitted in the axis parameters. Uncoupling commands such as MC_GearOut are
possible independent of that.

General rules for MC function blocks

TX120014 Version: 1.3

4 General rules for MC function blocks
For all MC function blocks the following rules apply, which ensure defined processing through the PLC
program.

Exclusivity of the outputs

The outputs Busy, Done, Error and CommandAborted are mutually exclusive, i.e. only one of these outputs
can be TRUE at a function block at any one time. When the Execute input becomes TRUE, one of the
outputs must become TRUE. Similarly, only one of the outputs Active, Error, Done and CommandAborted
can be TRUE at any one time.

An exception to this rule is MC_Stop [} 80]. MC_Stop sets Done to TRUE as soon as the axis is stopped.
Nevertheless, Busy and Active remain TRUE because the axis is locked. The axis is unlocked and Busy and
Active are set to FALSE only after Execute is set to FALSE.

Initial state

The outputs Done, InGear, InSync, InVelocity, Error, ErrorID and CommandAborted are reset with a falling
edge at input Execute, if the function block is not active (Busy=FALSE). However, a falling edge at Execute
has no influence on the command execution. Resetting Execute during command execution ensures that
one of the outputs is set at the end of the command for a PLC cycle. Only then are the outputs reset.

If Execute is triggered more than once while a command is executed, the function block will not execute
further commands, without providing any feedback.

Input parameters

The input parameters are read with rising edge at Execute. To change the parameters the command has to
be triggered again once it is completed, or a second instance of the function block must be triggered with
new parameters during command execution.

If an input parameter is not transferred to the function block, the last value transferred to this block remains
valid. A meaningful default value is used for the first call.

Position and Distance

The Position input designates a defined value within a coordinate system. Distance, in contrast, is a relative
measurement, i.e. the distance between two positions. Position and Distance are specified in technical units,
e.g. [mm] or [°], according to the axis scaling.

Dynamic parameters

The dynamic parameters for Move functions are specified in technical units with second as timebase. If an
axis is scaled in millimeters, for example, the following units are used: Velocity [mm/s], Acceleration [mm/s2],
deceleration [mm/s2], jerk [mm/s3].

Error handling

All function blocks have two error outputs for indicating errors during command execution. Error indicates the
error, ErrorID contains a supplementary error number. The outputs Done, InVelocity, InGear and InSync
indicate successful command execution and are not set if Error becomes TRUE.

Errors of different type are signaled at the function block output. The error type is not specified explicitly. It
depends on the unique, system-wide error number.

Error types
• Function block errors only concern the function block, not the axis (e.g. incorrect parameterization).

Function block errors do not have to be reset explicitly. They are reset automatically when the Execute
input is reset.

General rules for MC function blocks

TX1200 15Version: 1.3

• Communication errors (the function block cannot address the axis, for example). Communication errors
usually indicate incorrect configuration or parameterization. A reset is not possible. The function block
can only be triggered again after the configuration was corrected.

• Axis errors (logical NC axis) usually occur during the motion (e.g. following error). They cause the axis
to switch to error status. An axis error must be reset through MC_Reset [} 20].

• Drive errors (control device) may result in an axis error, i.e. an error in the logical NC axis. In many
cases can axis errors and drive errors can be reset together through MC_Reset. [} 20] Depending on
the drive controller, a separate reset mechanism may be required (e.g. connection of a reset line to the
control device).

Behavior of the Done output

The Done output (or alternatively InVelocity, InGear, InSync etc.) is set when a command was executed
successfully. If several function blocks are used for an axis and the running command is interrupted through
a further block, the Done output for the first block is not set.

Behavior of the CommandAborted output

CommandAborted is set if a command is interrupted through another block.

Behavior of the Busy output

The Busy output indicates that the function block is active. The block can only be triggered with a rising edge
at Execute, if Busy is FALSE. Busy is immediately set with a rising edge at Execute and is only reset when
the command was completed successful or unsuccessfully. As long as Busy is TRUE, the function block
must be called cyclically for the command to be executed.

Behavior of the Active output

If the axis movement is controlled by several functions, the Active output of each block indicates that the axis
executes the command. The status Busy=TRUE and Active=FALSE means that the command is not or no
longer executed.

Enable input and Valid output

In contrast to Execute the Enable input results in an action being executed permanently and repeatedly, as
long as Enable is TRUE. MC_ReadStatus [} 30]cyclically updates the status of an axis, for example, as long
as Enable is TRUE. A function block with an Enable input indicates through the Valid output that the data
indicated at the outputs are valid. The data can be updated continuously while Valid is TRUE.

BufferMode

Some function blocks have a BufferMode input for controlling the command flow with several function blocks.
For example, BufferMode can specify that a command interrupts another command (non-queued mode) or
that the following command is only executed after the previous command (queued mode). In queued mode
BufferMode can be used to specify the movement transition from one command to the next. This is referred
to as Blending, which specifies the velocity at the transition point.

A second function block is required to use the buffer mode. It is not possible to trigger a move block with new
parameters while it is active.

In non-queued mode a subsequent command leads to termination of a running command. In this case the
previous command sets the CommandAborted output. In queued mode a subsequent command waits until a
running command is completed. Note here that an endless movement (MC_MoveVelocity) does not permit a
queued subsequent command. Queued commands always lead immediately to an endless movement being
aborted, as in non-queued operation.

Only one command is queued while another command is executed. If more than one command is triggered
during a running command, then the last-started command to be queued is rejected with an error (error
0x4292 Buffer Full). If the last command is started in non-queued mode (Aborting), it becomes active and
interrupts the running and an already queued command.

General rules for MC function blocks

TX120016 Version: 1.3

BufferModes
• Aborting : Default mode without buffering. The command is executed immediately and interrupts any

other command that may be running.
• Buffered : The command is executed once no other command is running on the axis. The previous

movement continues until it has stopped. The following command is started from standstill.
• BlendingLow: The command is executed once no other command is running on the axis. In contrast to

Buffered the axis does not stop at the previous target, but passes through this position with the lower
velocity of two commands.

• BlendingHigh The command is executed once no other command is running on the axis. In contrast to
Buffered the axis does not stop at the previous target, but passes through this position with the higher
velocity of two commands.

• BlendingNext : The command is executed once no other command is running on the axis. In contrast to
Buffered the axis does not stop at the previous target, but passes through this position with the velocity
of the last command.

• BlendingPrevious: The command is executed once no other command is running on the axis. In
contrast to Buffered the axis does not stop at the previous target, but passes through this position with
the velocity of the first command.

Diagram of the buffer modes [} 103]

Optional blending position

Blending in the different buffer modes takes place in each case at the target position of the currently running
command. In the case of MoveVelocity no target position is defined and in other cases it may be useful to
change the blending position. To do this a BlendingPosition can be defined via the Options input of the
function block (see below), which is then used for the new command. The optional BlendingPosition must be
located before the target position of the previous command, otherwise the new command will be rejected
with an error message (0x4296). If the optional BlendingPosition has already been driven past, then the new
command is instantly implemented and thus behaves like an Aborting command.

Options input

Many function blocks have an Options input with a data structure containing additional, infrequently required
options. For the basic block function these options are often not required, so that the input can remain open.
The user only has to populate the Options data structure in cases where the documentation explicitly refers
to certain options.

Slave axes

Travel commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. Travel commands can be applied to coupled slave axes, if this option was explicitly activated in
the axis parameters. In this case only Buffer-ModeAborting is possible.

Migration from TcMC to TcMC2

TX1200 17Version: 1.3

5 Migration from TcMC to TcMC2
The main differences and modifications between the TcMC motion control library and the extended TcMC2
library are listed here, so that the effort for converting an existing project can be estimated.

Axis data structure

In the past an axis required two data structures for cyclic data exchange with the NC.

NcToPlc_Axis1 AT %I* : NCTOPLC_AXLESTRUCT;

PlcToNc_Axis1 AT %Q* : PLCTONC_AXLESTRUCT;

In most function blocks, including MC_MoveAbsolute [} 58], the NCTOPLC_AXLESTRUCT data structure
was transferresd at the Axis input. Certain function blocks, including MC_Power [} 19], expected an
additional PLCTONC_AXLESTRUCT structure.

In the TcMC2 environment the axis structure was extended so that all required data are included in a single
structure, which is transferred to each MC function block.

Axis1: AXIS_REF [} 101];

The structure contains the cyclic input and output data for the NC plus additional status information. An
existing project generally accesses the content of the NcToPlc structure. The data are also available in the
Axis1 structure and can be used to adapt the application program.

Example:

TcMC : NcToPlc_Axis1.fPosSoll

TcMC2 : Axis1.NcToPlc.SetPos

Please note that the subelements for the NcToPlc and. PlcToNc structures now have English names in view
of the international market. For example, the current set position for an axis is no longer referred to as
fPosSoll, but as SetPos.

Function blocks

The input and output configuration of the function blocks has changed slightly compared with TcMC. The
main new feature is support for MC_BufferMode [} 103] in Move blocks. In addition, the blocks now also
support a Busy and Active output. These modifications generally only require little migration effort. The
following table contains a list of function blocks with more extensive modifications.

TcMC TcMC2 Note
MC_GearInFloat MC_GearIn [} 93] MC_GearIn now accepts the gear

ratio as a floating point value
MC_NewPos
MC_NewPosAndVelo

MC_Move... The new BufferMode enables each
Move block to be used to assign a
new target for the axis or change
the velocity. The NewPos function
blocks are therefore no longer
required.

MC_MoveAbsoluteOrRestart MC_Move... MoveAbsoluteOrRestart can be
replaced with two instances of a
Move block (see BufferMode).

MC_CamIn
MC_CamInExt

MC_CamIn The new MC_CamIn function block
deals with the function of the
extended MC_CamInExt block.
The input circuit was adapted
accordingly.

Migration from TcMC to TcMC2

TX120018 Version: 1.3

MC_SetReferenceFlag MC_Home [} 88] Setting and resetting of the
reference flag (axis is referenced)
can be achieved with the
MC_Home block.

MC_SetPositionOnTheFly MC_SetPosition [} 21] For actual value setting on the fly,
MC_SetPosition is used in relative
mode (mode=TRUE).

MC_SetActualPosition MC_SetPosition [} 21] MC_SetActualPosition is replaced
with MC_SetPosition. The new
function block sets the actual and
set positions.

MC_GearOutExt MC_Move... Travel commands can be applied
to coupled slave axes, if this option
was explicitly activated in the axis
parameters (from TwinCAT 2.11).
Travel commands can be applied
to coupled slave axes, if this option
was explicitly activated in the axis
parameters. In this case only
Buffer-ModeAborting is possible.

MC_OrientedStop MC_MoveModulo [} 64] MC_MoveModulo can be started
from standstill or during motion. In
the latter case the block behaves
like MC_OrientedStop

MC_Stop MC_Halt [} 78] ,
MC_Stop [} 80]

MC_Halt executes a normal stop
during motion. In contrast,
MC_Stop locks the axis and
prevents further travel commands.
It should only be used in special
situations.

MC_Home MC_Home [} 88] MC_Home transfers the
bCalibrationCam signal of the
homing sensor only while the block
is active. To execute homing from
the System Manager with F9, the
signal must be transferred to the
NC by other means, e.g. through
direct allocation:
Axis.PlcToNc.ControlDword.5 :=
HomingSensor;

TcNC library

The previous TcMC library required declarations and functions from the TcNC library, so that this was always
integrated in a project. The new TcMC2 library no longer has this dependency. All required declarations and
functions are now included in TcMC2 library itself, so that the TcNC library is no longer required.
Nevertheless, the TcNC library can still be used for compatibility reasons.

Status information

In existing motion applications axis status information was often determined via a function call
(AxisHasJob(), AxisIsMoving() etc.). While these functions can still be used if the TcNC library is integrated,
we now recommended a different approach:

The complete status information for an axis is included in the above-mentioned axis data structure
Axis1:AXIS_REF [} 101]. However, these data have to be updated cyclically by calling the function block
MC_ReadStatus or an Axis1.ReadStatus action at the start of the PLC cycle. Current status information is
then available at any point in the program during the PLC cycle.

Organisation function blocks

TX1200 19Version: 1.3

6 Organisation function blocks

6.1 Axis functions

6.1.1 MC_Power

MC_Power activates software enable for an axis. Enable can be activated for both directions of travel or only
one direction. At Status output operational readiness of the axis is indicated.

A velocity override influences the velocity of all travel commands by a specified percentage.

In addition to software enable it may be necessary to activate a hardware enable signal in order to
enable a drive. This signal is not influenced by MC_Power and must be activated separately by the
PLC.
Depending on the drive type, Status also signals operational readiness of the drive. Digital drives
provide feedback on operational readiness, while analog drives are unable to indicate their
operational readiness. In the latter case Status only indicated operational readiness of the control
side.

Inputs

VAR_INPUT
Enable : BOOL; (* B *)
Enable_Positive : BOOL; (* E *)
Enable_Negative : BOOL; (* E *)
Override : LREAL (* V *) := 100.0; (* in percent - Beckhoff proprietary input *)
BufferMode : MC_BufferMode; (* V *)
END_VAR

MC_BufferMode [} 103]

Enable General software enable for the axis.
Enable_Positive Feed enable in positive direction. Only takes effect if

Enable = TRUE.
Enable_Negative Feed enable in negative direction. Only takes effect if

Enable = TRUE.
Override Velocity override in % for all movement commands.

(0 ≤Override≤ 100.0)
BufferMode The BufferMode is evaluated if Enable is reset.

MC_Aborting mode leads to immediate deactivation
of the axis enable. Otherwise, e.g. in MC_Buffered
mode, the function block waits until the axis no longer
executes a command.

General rules for MC function blocks [} 14]

Organisation function blocks

TX120020 Version: 1.3

Outputs

VAR_OUTPUT
Status : BOOL; (* B *)
Busy : BOOL; (* V *)
Active : BOOL; (* V *)
Error : BOOL; (* B *)
ErrorID : UDINT; (* E *)
END_VAR

Status Status=TRUE indicates that the axis is ready for
operation.

Busy The Busy output is TRUE, as long as the function
block is called up with Enable = TRUE

Active Active indicates that the command is executed.
Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

6.1.2 MC_Reset

An axis reset is carried out with the function block MC_Reset.

MC_Reset initially resets the NC axis. In many cases this also leads to a reset of the connected drive units.
Depending on the bus system or drive types, in some cases a separate reset may be required for the drive
units.

Inputs

VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with a rising edge at input
Execute.

Outputs

VAR_OUTPUT
Done : BOOL;

Organisation function blocks

TX1200 21Version: 1.3

Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE when the reset was
carried out successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new
command. At the same time one of the outputs, Done
or Error, is set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.1.3 MC_SetPosition
MC_SetPosition sets the current axis position to a parameterizable value.

In absolute mode, the actual position is set to the parameterized absolute Position value. In relative mode,
the actual position is offset by the parameterized Position value. In both cases, the set position of the axis is
set such that any following error that may exist is retained. The switch Options.ClearPositionLag can be used
to clear the following error.

Relative mode can be used to change the axis position during the motion.

Inputs

VAR_INPUT
Execute : BOOL;
Position : LREAL;
Mode : BOOL; (* RELATIVE=True, ABSOLUTE=False (Default)*)
Options : ST_SetPositionOptions;
END_VAR

Execute The command is executed with a rising edge at input Execute.
Position Position value to which the axis position is to be set.

In absolute mode the actual position is set to this value, in relative
mode it is shifted by this value.

Mode The axis position is set to an absolute value set if Mode=FALSE.
Otherwise is the axis position is changed relative to the specified
Position value. Relative mode can be used for changing the position of
an axis during motion.

Options The data structure option includes additional, rarely required
parameters. The input can normally remain open.

Organisation function blocks

TX120022 Version: 1.3

Options. ClearPositionLag ClearPositionLag can optionally be
used to set the set and actual
positions to the same value. In this
case the following error is
cancelled.

Options. SelectEncoderIndex SelectEncoderIndex can optionally
be set if an axis with several
encoders is used and the position
of a certain encoder is to be set
(Options.EncoderIndex).

Options. EncoderIndex EncoderIndex indicates the
encoder (0 to n) if
SelectEncoderIndex is TRUE.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE, once the position
was set successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs, Done or Error, is set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Organisation function blocks

TX1200 23Version: 1.3

6.2 Status and parameter

6.2.1 MC_ReadActualVelocity

The actual axis position can be read with the function block MC_ReadActualVelocity.

Inputs

VAR_INPUT
Enable : BOOL;
END_VAR

Enable The command is executed as long as Enable is
active.

Outputs

VAR_OUTPUT
Valid : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
ActualVelocity : LREAL;
END_VAR

Valid Indicates that ActualVelocity is valid.
Busy Indicates that the function block is active.
Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
ActualVelocity Current axis velocity

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Organisation function blocks

TX120024 Version: 1.3

6.2.2 MC_ReadActualPosition

The current axis position can be read with the function block MC_ActualPosition.

Inputs

VAR_INPUT
Enable : BOOL;
END_VAR

Enable The command is executed as long as Enable is
active.

Outputs

VAR_OUTPUT
Valid : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Position : LREAL;
END_VAR

Valid Indicates that the Position output is valid.
Busy Indicates that the function block is active.
Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
Position Current axis position

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.2.3 MC_ReadAxisComponents

Organisation function blocks

TX1200 25Version: 1.3

The function block MC_ReadAxisComponents is used to read information relating to the subelements
encoder, drive and controller of an axis.

In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with the rising edge.

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE, if the parameters were read
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done or Error, is
set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

6.2.4 MC_ReadAxisError

MC_ReadAxisError reads the axis error of an axis.

Organisation function blocks

TX120026 Version: 1.3

Inputs

VAR_INPUT
Enable : BOOL; (* B *)
END_VAR

Enable The axis error is output at the AxisErrorID output as
long as Enable is active

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Valid : BOOL; (* B *)
Busy : BOOL; (* E *)
Error : BOOL; (* B *)
ErrorID : DWORD; (* B *)
AxisErrorID : DWORD; (* B *)
END_VAR

Valid The error signaled at the AxisErrorID output is valid
Busy The Busy output becomes TRUE when the command

is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
AxisErrorID Error number for the axis

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.2.5 MC_ReadBoolParameter

The function block MC_ReadBoolParameter is used to read a boolean axis parameter.

In this case "axis" refers to the TwinCAT NC axis and not the drive.

Organisation function blocks

TX1200 27Version: 1.3

Inputs

VAR_INPUT
Enable : BOOL; (* B *)
ParameterNumber : MC_AxisParameter; (* B *)
ReadMode : E_ReadMode (* V *)
END_VAR

E_ReadMode [} 108] MC_AxisParameter [} 110]

Enable The command is executed as long as Enable is
active.

ParameterNumber Number [} 110] of the parameter to be read.
ReadMode Read mode [} 108] of the parameter to be read (once

or cyclic).

Outputs

VAR_OUTPUT
Valid : BOOL; (* B *)
Busy : BOOL; (* E *)
Error : BOOL; (* B *)
ErrorID : DWORD;(* E *)
Value : BOOL; (* B *)
END_VAR

Valid The value signaled at the Value output is valid
Busy The Busy output becomes TRUE when the command

is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
Value Displays the boolean value that was read.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

6.2.6 MC_ReadParameter

The function block MC_ReadParameter is used to read an axis parameter.

Organisation function blocks

TX120028 Version: 1.3

In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR_INPUT
Enable : BOOL; (* B *)
ParameterNumber : MC_AxisParameter; (* B *)
ReadMode : E_ReadMode (* V *)
END_VAR

E_ReadMode [} 108] MC_AxisParameter [} 110]

Enable The command is executed as long as Enable is
active.

ParameterNumber Number [} 110] of the parameter to be read.
ReadMode Read mode [} 108] of the parameter to be read (once

or cyclic).

Outputs

VAR_OUTPUT
Valid : BOOL; (* B *)
Busy : BOOL; (* E *)
Error : BOOL; (* B *)
ErrorID : DWORD; (* E *)
Value : LREAL; (* B *)
END_VAR

Valid The value signaled at the Value output is valid
Busy The Busy output becomes TRUE when the command

is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
Value Displays the read value.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Organisation function blocks

TX1200 29Version: 1.3

6.2.7 MC_ReadParameterSet

The complete parameter set of an axis can be read with the function block MC_ReadParameterSet.

In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with the rising edge.

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE, if the parameters were read
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done or Error, is
set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

Inputs/outputs

VAR_IN_OUT
Parameter : ST_AxisParameterSet;
Axis : AXIS_REF;
END_VAR

Parameter Parameter data structure [} 111] into which the
parameters are read

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Organisation function blocks

TX120030 Version: 1.3

6.2.8 MC_ReadStatus

MC_ReadStatus determines the current operating state of an axis and signals it at the function block
outputs.

The updated operating state is additionally stored in the Status output data structure and in the Axis.Status
axis data structure. This means the operating state only has to be read once at the start of each PLC cycle
and can then be accessed via Axis.Status.

The Axis variable (type AXIS_REF) already includes an instance of the function block
MC_ReadStatus. This means that the operating state of an axis can be updated at the start of a
PLC cycle by calling up Axis.ReadStatus.

Sample:

PROGRAM MAIN
VAR
Axis1 : AXIS_REF
END_VAR

(* call the read status function *)
Axis1.ReadStatus;

Inputs

VAR_INPUT
Enable : BOOL;
END_VAR

Enable As long as Enable = TRUE, the axis operating state
is updated with each call of the function block.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Valid : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorId : UDINT;
(* motion control statemachine states: *)
ErrorStop : BOOL;

Organisation function blocks

TX1200 31Version: 1.3

Disabled : BOOL;
Stopping : BOOL;
StandStill : BOOL;
DiscreteMotion : BOOL;
ContinuousMotion : BOOL;
SynchronizedMotion : BOOL;
Homing : BOOL;
(* additional status *)
ConstantVelocity : BOOL;
Accelerating : BOOL;
Decelerating : BOOL;
(* status data structure *)
Status : ST_AxisStatus;
END_VAR

Valid Indicates that the axis operating state indicated at the
other outputs is valid.

Busy Indicates that the function block is active.
Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
ErrorStop Axis status according to the PlcOpen state diagram

[} 11]
Disabled Axis status according to the PlcOpen state diagram

[} 11]
Stopping Axis status according to the PlcOpen state diagram

[} 11]
StandStill Axis status according to the PlcOpen state diagram

[} 11]
DiscreteMotion Axis status according to the PlcOpen state diagram

[} 11]
ContinousMotion Axis status according to the PlcOpen state diagram

[} 11]
SynchronizedMotion Axis status according to the PlcOpen state diagram

[} 11]
Homing Axis status according to the PlcOpen state diagram

[} 11]
ConstantVelocity The axis is moving with constant velocity
Acceleration The axis accelerates.
Decelerating The axis decelerates.
Status Extended status data structure [} 109] with additional

status information.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Organisation function blocks

TX120032 Version: 1.3

6.2.9 MC_WriteBoolParameter

Boolean parameters for the axis can be written with the function block MC_WriteBoolParameter.

In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR_INPUT
Execute : BOOL;
ParameterNumber : INT;
Value : BOOL;
END_VAR

Execute The command is executed with the rising edge.
ParameterNumber Number [} 110] of the parameter to be written.
Value This BOOL value is written.

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE, if the parameters were written
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done or Error, is
set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Organisation function blocks

TX1200 33Version: 1.3

6.2.10 MC_WriteParameter

Parameters for the axis can be written with the function block MC_WriteParameter.

In this case "axis" refers to the TwinCAT NC axis and not the drive.

Inputs

VAR_INPUT
Execute : BOOL;
ParameterNumber : INT;
Value : LREAL;
END_VAR

Execute The command is executed with the rising edge.
ParameterNumber Number [} 110] of the parameter to be written.
Value This LREAL value is written.

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE, if the parameters were written
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order. At
the same time one of the outputs, Done,
CommandAborted or Error, is set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Organisation function blocks

TX120034 Version: 1.3

6.3 Touch probe

6.3.1 MC_TouchProbe

The MC_TouchProbe function block records an axis position at the point in time of a digital signal
(measuring probe function). The position is usually not recorded directly in the PLC environment, but via an
external hardware latch, and is thus very accurate and independent of cycle time. The function block controls
this mechanism and determines the externally recorded position.

Prerequisites

The prerequisite for the position acquisition is suitable encoder hardware that is able to latch the recorded
position. The following equipment is supported, for example: SERCOS drives, the Beckhoff AX2000 with
SERCOS and Lightbus interfaces and the Beckhoff KL5101 Encoder Bus Terminals. The digital trigger
signal is wired into this hardware and, independently of the PLC cycle, triggers the recording of the current
axis position.

These end devices have to be configured to some extent so that a position recording is possible. For details,
read Measuring probe evaluation with AX2xxx-B200 (Lightbus), Measuring probe evaluation with AX2xxx-
B750 (SERCOS), AX5000 Probe Unit and AX5000 Function of a probe unit.

Restrictions

Irrespective of the hardware used, MC_TouchProbe can only record one edge of a probe unit at a time. If
both edges are to be recorded, for example, then the block must be restarted after the first edge with a
changed parameterization. Edges that follow one another in quick succession therefore cannot be recorded.
In order to avoid this problem, you are referred to the extended function block MC_TouchProbe_V2 [} 37].

After a measuring probe cycle has been initiated by a rising edge on the Execute input, this is only
terminated if the outputs Done, Error or CommandAborted become TRUE. If the process is to be
interrupted at an intermediate point in time, the function block MC_AbortTrigger [} 40] with the
same TriggerInput [} 114] data structure must be called up. Otherwise no new cycle can be
initiated.

Organisation function blocks

TX1200 35Version: 1.3

Signal curve

Inputs
VAR_INPUT
Execute : BOOL;
WindowOnly : BOOL;
FirstPosition : LREAL;
LastPosition : LREAL;
END_VAR

Execute The command is executed with the rising edge and
the external position latch is activated.

WindowOnly If this option is active, only one position inside the
window between FirstPosition and LastPosition is
recorded. Positions outside the window are rejected
and the external position latch is automatically newly
activated. Only if the recorded position lies inside the
window does Done become TRUE.
The recording window can be interpreted in terms of
absolute or modulo values. In this connection the flag
ModuloPositions [} 114] in the structure TriggerInput
[} 114] is to be set accordingly. In the case of
absolute value positions there is exactly one window.
In the case of modulo value positions the window
repeats itself within the modulo cycle defined in the
axis parameters (e.g. 0 to 360 degrees).

FirstPosition Initial position of the recording window, if
WindowOnly is TRUE. This position can be
interpreted as an absolute or modulo value. In this

Organisation function blocks

TX120036 Version: 1.3

connection the flag ModuloPositions [} 114] is to be
set appropriately in the structure TriggerInput (see
below).

LastPosition Final position of the recording window, if WindowOnly
is TRUE. This position can be interpreted as an
absolute or modulo value. In this connection the flag
ModuloPositions [} 114] is to be set appropriately in
the structure TriggerInput (see below).

Outputs
VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
RecordedPosition : LREAL;
END_VAR

Done Becomes TRUE, if an axis position has been
recorded successfully. The position is sent to the
output RecordedPosition.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

CommandAborted Becomes TRUE if the process is interrupted by an
external event, e.g. by the call up of MC_AbortTrigger
[} 40].

Error Becomes TRUE, as soon as an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
RecordedPosition Axis position recorded at the point in time of the

trigger signal

Organisation function blocks

TX1200 37Version: 1.3

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
TriggerInput : TRIGGER_REF;
END_VAR

Axis Axis data structure [} 101]
TriggerInput TRIGGER._REF [} 114] data structure for describing the

trigger source

6.3.2 MC_TouchProbe_V2

Fig. 1: MC_TouchProbe_V2_00

The MC_TouchProbe_V2 function block records an axis position at the point in time of a digital signal
(measuring probe function). The position is usually not recorded directly in the PLC environment, but via an
external hardware latch, and is thus very accurate and independent of cycle time. The function block controls
this mechanism and determines the externally recorded position.

The function of the MC_TouchProbe_V2 function block is similar that of the MC_TouchProbe function block.
With several instances, however, it is possible to operate up to two probe units at the same time and in
parallel to record the rising and falling signal edges each with an instance. Furthermore, a continuous mode
is available that evaluates successive signal edges without renewed activation.

Prerequisites
• TwinCAT version 2.11 R2 build 2022 or higher (before that use MC_TouchProbe [} 34])

The prerequisite for the position acquisition is suitable encoder hardware that is able to latch the recorded
position. Support is offered for:

• SERCOS drives
In contrast to MC_TouchProbe, the drive must be configured with an extended interface, in which the
parameters S 0 0405 and S-0 0406 are included in the process image. See also ...

• EtherCAT SoE drives (E.g. AX5000)
In contrast to MC_TouchProbe, the drive must be configured with an extended interface, in which the
parameters S 0 0405 and S-0 0406 are included in the process image. See also ...

• EtherCAT CoE drives
The drive must be configured with the parameter 0x60B9 (touch probe status) in the process image.

• EL5101, KL5101
Latching of the C track and the digital input is possible. This hardware can only record one signal or
edge at a time. Continuous mode is not supported.

The digital trigger signal is wired into this hardware and, independently of the PLC cycle, triggers the
recording of the current axis position.

These end devices have to be configured to some extent so that a position recording is possible. Beckhoff
EtherCAT drives can be configured with the System Manager. Note that the probe unit has to be configured
with the "Extended NC Probe Unit" interface.

Organisation function blocks

TX120038 Version: 1.3

After a measuring probe cycle has been initiated by a rising edge on the Execute input, this is only
terminated if the outputs Done, Error or CommandAborted become TRUE. If the process is to be
interrupted at an intermediate point in time, the function block MC_AbortTrigge_V2 [} 41] with the
same TriggerInput [} 114] data structure must be called up. Otherwise no new cycle can be
initiated.

Signal curve

Inputs
VAR_INPUT
Execute : BOOL;
WindowOnly : BOOL;
FirstPosition : LREAL;
LastPosition : LREAL;
END_VAR

Execute The command is executed with the rising edge and
the external position latch is activated.

WindowOnly If this option is active, only one position inside the
window between FirstPosition and LastPosition is
recorded. Positions outside the window are rejected
and the external position latch is automatically newly
activated. Only if the recorded position lies inside the
window does Done become TRUE.
The recording window can be interpreted in terms of
absolute or modulo values. In this connection the flag
ModuloPositions [} 114] in the structure TriggerInput
[} 114] is to be set accordingly. In the case of
absolute value positions there is exactly one window.

Organisation function blocks

TX1200 39Version: 1.3

In the case of modulo value positions the window
repeats itself within the modulo cycle defined in the
axis parameters (e.g. 0 to 360 degrees).

FirstPosition Initial position of the recording window, if
WindowOnly is TRUE. This position can be
interpreted as an absolute or modulo value. In this
connection the flag ModuloPositions [} 114] is to be
set appropriately in the structure TriggerInput (see
below).

LastPosition Final position of the recording window, if WindowOnly
is TRUE. This position can be interpreted as an
absolute or modulo value. In this connection the flag
ModuloPositions [} 114] is to be set appropriately in
the structure TriggerInput (see below).

Outputs
VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
RecordedPosition : LREAL;
RecordedData : MC_TouchProbeRecordedData;
END_VAR

Done Becomes TRUE, if an axis position has been
recorded successfully. The position is sent to the
output RecordedPosition.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

CommandAborted Becomes TRUE if the process is interrupted by an
external event, e.g. by the call up of MC_AbortTrigger
[} 40].

Error Becomes TRUE, as soon as an error occurs.

Organisation function blocks

TX120040 Version: 1.3

ErrorID If the error output is set, this parameter supplies the
error number.

RecordedPosition Axis position recorded at the point in time of the
trigger signal

RecordedData Data structure with complementary information
relating to the logged axis position at the time of the
trigger signal

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
TriggerInput : TRIGGER_REF;
END_VAR

Axis Axis data structure [} 101]
TriggerInput TRIGGER_REF [} 114] data structure for describing the

trigger source

6.3.3 MC_AbortTrigger

The MC_AbortTrigger function block interrupts a measuring probe cycle initiated by MC_TouchProbe.
MC_TouchProbe initiates a measuring probe cycle by activating a position latch in external encoder or drive
hardware. If the process is to be terminated before the trigger signal has activated the position latch,
MC_AbortTrigger can be used for this purpose. If the measuring probe cycle has completed successfully, it
is not necessary to call up this function block.

Inputs
VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with the rising edge and
the external position latch is deactivated.

Outputs
VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE, as soon as the measuring probe
cycle has been interrupted successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Organisation function blocks

TX1200 41Version: 1.3

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
TriggerInput : TRIGGER_REF;
END_VAR

Axis Axis data structure [} 101]
TriggerInput TRIGGER_REF [} 114] data structure for describing the

trigger source. This data structure must be
parameterized before the function block is called for
the first time.

6.3.4 MC_AbortTrigger_V2

The MC_AbortTrigger_V2 function block interrupts a measuring probe cycle initiated by
MC_TouchProbe_V2. MC_TouchProbe_V2 initiates a measuring probe cycle by activating a position latch in
external encoder or drive hardware. If the process is to be terminated before the trigger signal has activated
the position latch, MC_AbortTrigger_V2 can be used for this purpose. If the measuring probe cycle has
completed successfully, it is not necessary to call up this function block.

Inputs
VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with the rising edge and
the external position latch is deactivated.

Outputs
VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE, as soon as the measuring probe
cycle has been interrupted successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
TriggerInput : TRIGGER_REF;
END_VAR

Axis Axis data structure [} 101]

Organisation function blocks

TX120042 Version: 1.3

TriggerInput TRIGGER_REF [} 114] data structure for describing the
trigger source. This data structure must be
parameterized before the function block is called for
the first time.

6.4 External set value generator

6.4.1 MC_ExtSetPointGenEnable

The external set value generator of an axis can be switched on with the function block
MC_ExtSetPointGenEnable. The axis then adopts the set value specifications from its cyclic axis interface
[} 102] (Axis.PlcToNc.ExtSetPos, ExtSetVelo, ExtSetAcc and ExtSetDirection).

An external set value generator is usually a PLC block that calculates cyclic set values for an axis and can
therefore substitute the internal set value generator in an NC axis.

See also: MC_ExtSetPointGenDisable [} 43] and MC_ExtSetPointGenFeed [} 44]

Inputs

VAR_INPUT
Execute : BOOL;
Position : LREAL;
PositionType : E_PositionType;
END_VAR

Execute The command is executed with the rising edge.
Position Position for target position monitoring. Setting of this

position does not mean that the axis moves to this
position, for which only the external set value
generator is responsible. Setting of this position
activates target position monitoring, and the flag Data
type ST_AxisStatus [} 109] becomes TRUE, as soon
as this position is reached.

PositionType Position type [} 115] - POSITION TYPE_ABSOLUTE
or POSITION TYPE_RELATIVE

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Enabled : BOOL;
END_VAR

Done Becomes TRUE, if the command was issued
successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Organisation function blocks

TX1200 43Version: 1.3

Error Becomes TRUE, as soon as an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
Enabled Enabled shows the current state of the external set

value generator, independent of the function
execution.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure [} 101]

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.4.2 MC_ExtSetPointGenDisable

The external set value generator of an axis can be switched off with the function block
MC_ExtSetPointGenDisable. The axis then no longer adopts the set value specifications from its cyclic axis
interface [} 102] (Axis.PlcToNc.ExtSetPos, ExtSetVelo, ExtSetAcc and ExtSetDirection)

An external set value generator is usually a PLC block that calculates cyclic set values for an axis and can
therefore substitute the internal set value generator in an NC axis.

See also: MC_ExtSetPointGenEnable [} 42] and MC_ExtSetPointGenFeed [} 44]

Inputs

VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with the rising edge.

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Enabled : BOOL;
END_VAR

Done Becomes TRUE, if the command was executed
successfully.

Organisation function blocks

TX120044 Version: 1.3

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number
Enabled Enabled shows the current state of the external set

value generator, independent of the function
execution.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.4.3 MC_ExtSetPointGenFeed

The MC_ExtSetPointGenFeed function is used to feed set values from an external set value generator into
an axis. The function copies the data instantaneously into the cyclic axis interface [} 102] (fExtSetPos,
fExtSetVelo, fExtSetAcc and nExtSetDirection). The function result of MC_ExtSetPointGenFeed is not used
and therefore always FALSE.

An external set value generator is usually a PLC block that calculates cyclic set values for an axis and can
therefore substitute the internal set value generator in an NC axis.

See also: MC_ExtSetPointGenEnable [} 42] and MC_ExtSetPointGenDisable [} 43]

Inputs

VAR_INPUT
Position : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Direction : DINT;
END_VAR

Position Set position from an external set value generator
Velocity Set velocity from an external set value generator
Acceleration Set acceleration from an external set value generator
Direction Set direction from an external set value generator.

(-1 = negative direction, 0 = standstill, 1 = positive
direction)

Organisation function blocks

TX1200 45Version: 1.3

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5 Special extensions

6.5.1 MC_PowerStepper

The enables for an axis are set with the function block MC_PowerStepper. An MC_Power block is used
internally for this purpose. The MC_PowerStepper also detects the stall situations that occur in stepper
motors if they are overloaded, and offers suitable counter measures. The status bits of a KL2531 or KL2541
terminal are monitored, and the errors indicated there are reported to the NC.

There is more detailed explanation in the Appendix [} 46].

Inputs

VAR_INPUT
Enable : BOOL;
Enable_Positive : BOOL;
Enable_Negative : BOOL;
Override : LREAL;
DestallParams : ST_PowerStepperStruct;
KL_Status : USINT;
KL_Status2 : UINT;
END_VAR

Enable NC controller enable for the axis.
Enable_Positive NC advance movement enable in positive direction.
Enable_Negative NC advance movement enable in negative direction.
Override Override value in percent (e.g. 68.123%)
DestallParams The functions of the block are enabled here [} 111],

and their working rules are specified.

ST_PowerStepperStruct [} 111]
KL_Status The status byte of a terminal of type KL2531 or

KL2541.
KL_Status2 The status word of a terminal of type KL2531 or

KL2541.

Organisation function blocks

TX120046 Version: 1.3

Outputs

VAR_OUTPUT
Status : BOOL;
Error : BOOL;
ErrorID : UDINT;
Stalled : BOOL;
StallError : BOOL;
END_VAR

Status Becomes TRUE once all enables were set
successfully.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.
Stalled no description
StallError no description

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.2 Notes on the MC_PowerStepper
The enables and the override for an axis are set with the MC_PowerStepper [} 45] function block. An
MC_Power [} 19] block is used internally for this purpose. The MC_PowerStepper also detects the stall
situations that occur in stepper motors if they are overloaded, and offers suitable counter measures. The
status bits of a KL2531 or KL2541 terminal are monitored, and the errors indicated there are reported to the
NC.

Stepper motor and synchronous servo: similarities and differences

Both types of motor use an electromagnetic field and the field of a permanent magnet in order to generate a
driving force through their interaction. Whereas, however, the servomotor makes use of an expensive
system of sensors in order to make specific adjustments to the alignments of the fields (current supplied
dependent on the rotor position), this position-dependent control is not used for the stepper motor. This
makes it possible to save considerable costs. There is, however, a possibility that some external force will
push the motor beyond the position where it is able to generate the maximum torque. Because the
electrically generated magnetic field does not take this into account, the restoring torque generated will fall
as the excursion increases. As a result of this, if the excursion is more than the one half of one pole step
then the corrective torque will change sign, pushing the motor on in the direction of the next pole position.
Depending on the conditions that now apply, the motor may now latch into the new position (which means
that a complete step has been lost), or the whole process may be repeated again here. The latter case is
referred to as stalling, and is most likely to occur when current is fed to the motor at the typical frequency of
the active drive operation.

Example 1: A stepper motor fitted with an encoder is operated with the NC PTP using the parameters typical
for servos.

Organisation function blocks

TX1200 47Version: 1.3

After about 1.8 seconds, the axis is briefly blocked by an obstacle. Although the axis is then able to move
freely, it is unable to follow the set value of the velocity, but will remain stationary, making considerable noise
but without generating any detectable torque. Only after the profile generator has reached its target does the
total of the set and correction velocities fall. In this example, the motor moves in an irregular manner. Even a
small load torque will, however, prevent this. The only solution here would be to issue an MC_Reset [} 20]
and to allow an appropriate settling time to pass. The axis would then have to be restarted by the application.
A variety of state bits in the axis interface would react here. This must be appropriately considered in the
application, as otherwise incorrect reactions may occur in the machine control process.

First corrective step: Controller limitation

If, in the situation described above, the output of the position controller is limited to a sufficiently small value
such as, for instance, 2%, the following pattern results.

Organisation function blocks

TX120048 Version: 1.3

Here again, for the remaining period of profile generation, the set speed is too high for the stepper motor to
be able to follow the set movement properly. When the end of the set profile has been reached, the stepper
motor is now brought to its target by the position controller, at a working frequency that it is able to follow
without the ramp. It generates a very high torque as it does this. The time required for this corrective
measure is, however, very long.

Detection and handling of stall situations using an encoder

In order to be able to take appropriate counter-measures, it is first necessary to detect the problem. The
following pattern results if an MC_PowerStepper function block is used. It has a parameter structure of type
ST_PowerStepperStruct [} 111], in which PwStDetectMode_Lagging is entered as the DestallDetectMode.
The block uses the following error of the axis as the basis of its decision, making use of the threshold value
and the filter time from the NC axis data for the following error monitoring that is to be deactivated here. In
this example, PwStMode_SetError is entered as the DestallMode. Initially, the only difference from the
following error alarm is the different error code.

Organisation function blocks

TX1200 49Version: 1.3

If PwStMode_UseOverride is entered as the DestallMode, the MC_PowerStepper block uses the override to
halt the profile immediately. Because, however, this halt does not abort the profile, yet does at the same time
prevent the end of the profile from being reached, there is no effect on any status bits. The controller output,
limited here to 2%, brings the axis to within the following error threshold of the current set position of the
profile. Then the override is then returned to the value specified by the application.

Organisation function blocks

TX120050 Version: 1.3

As a result, a significantly greater proportion of the overall profile is travelled at the specified speed, and the
target position is reached correctly. The status information for the axis is generated correctly.

Combinations of stall detection and handling

The following table illustrates the combinations of the supported modes for stall detection and handling.

PwStMode_SetError PwStMode_SetErrNonRef PwStMode_UseOverride
PwStDetectMode_Encoderless Comment 1 Comment 2 not suitable
PwStDetectMode_Lagging Comment 3 not useful Comment 4

Comment 1: Useful for axes without encoder that are not referenced.

Comment 2: Useful for axes without encoder that are referenced with the aid of the terminal's pulse counter
and, for instance, an external sensor.

Comment 3: The resultant behavior largely corresponds to following error monitoring.

Comment 4: Useful for axes with encoder.

Organisation function blocks

TX1200 51Version: 1.3

6.5.3 MC_OverrideFilter

The function block MC_OverrideFilter can be used to convert an unfiltered override value consisting of digits
(e.g. a voltage value of an analog input terminal) into a filtered override value that matches the cyclic axis
interface (PlcToNc) (DWORD in the range 0...1000000). This filtered override is also available in percent
(LREAL in the range 0...100%).
The raw input value is limited to a validity range by LowerOverrideThreshold and UpperOverrideThreshold,
and implemented as parameterizable steps (resolution) (OverrideSteps). After each override change at the
output of the FB, a minimum recovery time is awaited internally (OverrideRecoveryTime) before a new
override value can be accepted. The only exceptions are the override values 0% and 100%, which are
always implemented without delay for safety reasons.

Due to the gradation of the override output value (OverrideValueFiltered), the filtered override may
become zero for very small override input values (OverrideValueRaw). A zero override leads to
standstill of the axis. If total standstill is undesired, OverrideValueRaw should not fall below the
smallest level.

Inputs

VAR_INPUT
OverrideValueRaw : DINT;
LowerOverrideThreshold : DINT := 0; (* 0...32767 digits *)
UpperOverrideThreshold : DINT := 32767;(* 0...32767 digits *)
OverrideSteps : UDINT := 200; (* 200 steps=> 0.5 percent*)
OverrideRecoveryTime : TIME := T#150ms; (* 150 ms *)
END_VAR

OverrideValueRaw Raw, unfiltered override value (e.g. a voltage value of
an analog input terminal).

LowerOverrideThreshold The lower threshold for the raw override value.
UpperOverrideThreshold The upper threshold for the raw override value.
OverrideSteps The specified steps (override resolution).
OverrideRecoveryTime Minimum recovery time, after which a new filtered

override value is placed on the output. The override
values 0% and 100% are implemented without delay.

Outputs

VAR_OUTPUT
OverrideValueFiltered : DWORD; (* 0...1000000 counts *)
OverridePercentFiltered : LREAL; (* 0...100 % *)
Error : BOOL;
ErrorId : UDINT;
END_VAR

OverrideValueFiltered The filtered override value in digits (the data type
matches the override in the cyclic axis interface 0 to
1000000).

OverridePercentFiltered The filtered override value in percent (0..100%).
Error Becomes TRUE if an error occurs.

Organisation function blocks

TX120052 Version: 1.3

ErrorID If the error output is set, this parameter supplies the
error number.

Possible error number Possible causes
MC_ERROR_PARAMETER_NOT_CORRECT • OverrideSteps <= 1

• LowerOverrideThreshold >= UpperOverride-
Threshold

6.5.4 MC_SetOverride

The override for an axis can be specified with the function block MC_SetOverride.

Inputs

VAR_INPUT
Enable : BOOL; (* B *)
VelFactor : LREAL (* B *) := 1.0; (*1.0 = 100%*)
AccFactor : LREAL (* E *) := 1.0; (*1.0 = 100%*)(* not supported *)
JerkFactor : LREAL (* E *) := 1.0; (*1.0 = 100%*)(* not supported *)
END_VAR

Enable The command is executed as long as Enable is
active.

VelFactor Velocity override factor
AccFactor not supported
JerkFactor not supported

Outputs

VAR_OUTPUT
Enabled : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Enabled The parameterized override is set
Busy The Busy output becomes TRUE when the command

is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Organisation function blocks

TX1200 53Version: 1.3

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.5 MC_SetEncoderScalingFactor
MC_SetEncoderScalingFactor changes the scaling factor for the active encoder of an axis, either at standstill
or in motion.

The change can be absolute or relative. This mode is only suitable at standstill, since in absolute mode the
change in scaling factor leads to a position discontinuity. In relative mode an internal position offset is
adapted at the same time such that no discontinuity occurs. Please note that intervention during motion
changes the actual velocity of the axis while the real velocity remains constant. Therefore only small
changes can be implemented during the motion.

Inputs

VAR_INPUT
Execute : BOOL;
ScalingFactor : LREAL;
Mode : E_SetScalingFactorMode;
Options : ST_SetEncoderScalingOptions;
END_VAR

Execute The command is executed with a rising edge at input Execute.
ScalingFactor Scaling factor of the active encoder of an axis. The scaling factor is

specified in physical positioning units [u] divided by the number of
encoder increments.

Mode The scaling factor can be set in absolute or relative mode
(ENCODERSCALINGMODE_ABSOLUTE,
ENCODERSCALINGMODE_RELATIVE).
In absolute mode counting starts at the origin of the axis coordinate
system, resulting in a position discontinuity if the scaling factor is
changed. In relative mode the actual position of the axis does not
change. This mode is therefore also suitable for changes during motion.

Options The data structure option includes additional, rarely required
parameters. The input can normally remain open.

Options. SelectEncoderIndex SelectEncoderIndex can optionally
be set if an axis with several
encoders is used and the position
of a certain encoder is to be set
(Options.EncoderIndex).

Options. EncoderIndex EncoderIndex indicates the
encoder (0 to n) if
SelectEncoderIndex is TRUE.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
Options : ST_SetPositionOptions;
END_VAR

Done The Done output becomes TRUE, once the position
was set successfully.

Organisation function blocks

TX120054 Version: 1.3

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs, Done or Error, is set.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number:

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.6 MC_PositionCorrectionLimiter

The function block MC_PositionCorrectionLimiter writes a correction value (PositionCorrectionValue) at the
actual position of an axis. Depending on the correction mode the data are fed either directly or filtered to the
axis.

VAR_INPUT

VAR_INPUT
Enable : BOOL;
PositionCorrectionValue : LREAL;
CorrectionMode : E_AxisPositionCorrectionMode;
Acceleration : LREAL;
CorrectionLenght : LREAL;
END_VAR

Enable The continuous writing of the
PositionCorrectionValue is activated by this input. It
must be TRUE as long as new correction values are
to be accepted.

PositionCorrectionValue The correction value that is to be added to the actual
value of the axis.

CorrectionMode Depending on this mode the PositionCorrectionValue
is written either directly or filtered. For a detailed
description see E_AxisPositionCorrectionMode
[} 113].

Organisation function blocks

TX1200 55Version: 1.3

Acceleration Depending on the CorrectionMode the maximum
acceleration to reach the new correction value is
specified here. In the case of
PositionCorrectionMode_Fast [} 113] this value has a
direct effect on the position delta by PLC-tick.
Max. permissible correction value position delta =
acceleration * (PLC cycle time)^2.
The position correction is not limited if acceleration is
parameterized to 0.0.

CorrectionLength If the CorrectionMode corresponds to
PositionCorrectionMode_FullLength [} 113], this
parameter becomes active. A change in the
PositonCorrectionValue is distributed over this
correction length.

VAR_IN_OUT

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis AXIS_REF [} 101] axis data structure

VAR_OUTPUT

VAR_OUTPUT
Busy : LREAL;
Error : BOOL;
ErrorId : UDINT;
Limiting : BOOL;
ND_VAR

Busy Goes TRUE as soon as the function block is active
and FALSE when it returns to the original state.

Error Becomes TRUE, as soon as an error occurs.
ErrorId If the error output is set, this parameter supplies the

error number.
Limiting Goes TRUE if the demanded

PositionCorrectionValue has not yet been completely
accepted.

The Position Correction parameter in the System Manager must be enabled in order to use this
function block successfully.

6.5.7 MC_ReadDriveAddress

MC_ReadDriveAddress reads the ADS access data for a drive device connected to the axis. This
information is required for accessing the device, e.g. for special parameterization.

Organisation function blocks

TX120056 Version: 1.3

Inputs

VAR_INPUT
Execute : BOOL; (* B *)
END_VAR

Execute The command is executed with a rising edge at input
Execute.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL; (* B *)
Busy : BOOL; (* E *)
Error : BOOL; (* B *)
ErrorID : DWORD; (* B *)
DriveAddress : ST_DriveAddress; (* B *)

END_VAR

Done Becomes TRUE if the command was executed error-
free.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.
DriveAddress ADS access data [} 111] of a drive unit connected to

the axis.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

6.5.8 MC_SetAcceptBlockedDriveSignal

There are situations in which a drive no longer follows the NC setpoints, e.g. if an axis reaches a limit switch.
The NC interprets such a situation as an error, and the drive is stopped. In some cases the user may want to
provoke such a situation deliberately, e.g. in order to move to a limit switch for a reference run. The function
MC_SetAcceptBlockedDriveSignal can be used to temporarily prevent the NC axis generating an error in
situations where the drive no longer follows the NC setpoints.

• See also bit 8 of the ControlDWord in AXIS_REF.

Organisation function blocks

TX1200 57Version: 1.3

• A SERCOS/SoE drive reports "Drive follows the command values" via status bit 3 of drive status word
S-0-0135.

• A CANopen/CoE drive reports "Drive follows the command values" via status bit 12 of object 6041h.

FUNCTION MC_SetAcceptBlockedDriveSignal: BOOL

Inputs
VAR_INPUT
 Enable : BOOL;
END_VAR

Enable: NC controller enable for the axis.

Inputs/outputs
VAR_IN_OUT
 Axis : AXIS_REF;
END_VAR

Axis: Axis data structure that unambiguously addresses an axis in the system. Among other parameters it
contains the current axis status, including position, velocity or error state. (Type: AXIS_REF [} 101])

Motion function blocks

TX120058 Version: 1.3

7 Motion function blocks

7.1 Point to point motion

7.1.1 MC_MoveAbsolute

MC_MoveAbsolute starts positioning to an absolute target position and monitors the axis movement over the
whole travel path. The Done output is set once the target position has been reached. Otherwise the
CommandAborted or, on error, the Error output is set.

MC_MoveAbsolute is predominantly used for linear axis systems. For modulo axes the position is not
interpreted as a modulo position, but as an absolute position in continuous absolute coordinate system.
Alternatively, the MC_MoveModulo [} 64] block can be used for modulo positioning.

Travel commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. Travel commands can be applied to coupled slave axes, if this option was explicitly activated in
the axis parameters. In this case only Buffer-ModeAborting is possible.

Inputs

VAR_INPUT
Execute : BOOL;
Position : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

Execute The command is executed with a rising edge at input
Execute.

Position Absolute target position to be used for positioning.
Velocity Maximum travel velocity (>0).
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command

Motion function blocks

TX1200 59Version: 1.3

becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.
If the command is applied to a coupled slave axis
used, the only available buffer mode is Aborting.
A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed If the
command was queued, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Motion function blocks

TX120060 Version: 1.3

7.1.2 MC_MoveRelative

MC_MoveRelative starts a relative positioning procedure based on the current set position and monitors the
axis movement over the whole travel path. The Done output is set once the target position has been
reached. Otherwise, the output CommandAborted or, in case of an error, the output Error is set.

Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the
axis parameters. A motion command such as MC_MoveAbsolute then automatically leads to
decoupling of the axis, after which the command is executed. In this case the only available buffer
mode is Aborting.

Inputs

VAR_INPUT
Execute : BOOL;
Distance : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

Execute The command is executed with a rising edge at
Execute input.

Distance Relative distance to be used for positioning.
Velocity Maximum travel velocity (>0).
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
transition condition from the current to the next
command is also defined by the BufferMode.
If the command is applied to a coupled slave axis,
only the buffer mode Aborting is possible.
To use the BufferMode, a second function block is
always necessary. It is not possible to trigger a move
function block with new parameters while it is active.

Motion function blocks

TX1200 61Version: 1.3

Options The data structure Options includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Motion function blocks

TX120062 Version: 1.3

7.1.3 MC_MoveAdditive

MC_MoveAdditive starts relative positioning procedure based on the last target position instruction,
irrespective of whether this was reached. The Done output is set once the target position has been reached.
Otherwise the CommandAborted or, on error, the Error output is set.

If no last target position is known or the axis is moving continuously, the movement is executed based on the
current set position for the axis.

Inputs

VAR_INPUT
Execute : BOOL;
Distance : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

Execute The command is executed with a rising edge at input
Execute.

Distance Relative distance to be used for positioning.
Velocity Maximum travel velocity (>0).
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.
A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Motion function blocks

TX1200 63Version: 1.3

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed If the
command was queued, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

MC_MoveAdditive is not implemented for fast/slow axes.

Motion function blocks

TX120064 Version: 1.3

7.1.4 MC_MoveModulo

The function block MC_MoveModulo carries out a positioning referenced to the modulo position of an axis.
The basis for a modulo rotation is the adjustable axis parameter modulo factor (e.g. 360°). A distinction is
made between three possible start types, depending on the Direction input.

• Positioning in positive direction
• Positioning in negative direction
• Positioning along shortest path

Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the
axis parameters. A motion command such as MC_MoveModulo then automatically leads to
decoupling of the axis, after which the command is executed. In this case the only available buffer
mode is Aborting.

Starting an axis from standstill

If an axis is started from standstill with MC_MoveModulo , it is possible to specify positions greater than or
equal to 360°, in order to perform additional full turns. The same applies to a start with the
BufferModeMC_Buffered.

Starting an axis during motion

If an axis is already in motion, certain special considerations apply. The direction of movement cannot be
reversed by MC_MoveModulo, i.e. the target can only be reached in the current direction. The user is not
able to specify the number of additional turns. The system automatically calculates how the axis can be
moved to the target position on the shortest possible path.

The error output must be analyzed, because under certain conditions an oriented stop is not possible. For
example, a standard stop may have been triggered just before, or an oriented stop would cause an active
software limit switch to be exceeded. For all fault conditions, the axis is stopped safely, but it may
subsequently not be at the required oriented position.

Special cases

Special attention must be paid to the behavior when one or more complete modulo rotations are requested.
If the axis is located at an exact set position, such as 90 degrees, and if positioning to 90 degrees is
required, no movement is carried out. If required to turn 450 degrees in a positive direction, it will perform
just one rotation. The behavior can be different following an axis reset, because the reset will cause the
current actual position to be adopted as the set position. The axis will then no longer be exactly at 90
degrees, but will be a little under or over. These cases will give rise either to a minimum positioning to 90
degrees, or on the other hand a complete rotation. For further details please refer to the Commentary [} 66]
section.

Depending on the particular case, it may be more effective for complete modulo rotations to calculate the
desired target position on the basis of the current absolute position, and then to position using the function
block MC_MoveAbsolute [} 58].

Motion function blocks

TX1200 65Version: 1.3

Modulo positioning and absolute positioning are available for all axes, irrespective of the Modulo
setting in the TwinCAT System Manager. For each axis, the current absolute position SetPos can
be read from the cyclic axis interface data type NCTOPLC_AXIS_REF [} 102].

Important: Further information on modulo movements [} 66]

Inputs

VAR_INPUT
Execute : BOOL;
Position : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
Direction : MC_Direction;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

MC_BufferMode [} 103] MC_Direction [} 105]

Execute The command is executed with a rising edge at
Execute input.

Position Modulo target position to be used for positioning.
If the axis is started from standstill, positions greater
than 360° result in additional turns. Negative
positions are not permitted.

Velocity Maximum travel velocity (>0).
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

Direction Positive or negative direction of travel of type
MC_Direction [} 105].
If the axis is started during a motion, the direction
may not be reversed.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
transition condition from the current to the next
command is also defined by the BufferMode.
To use the BufferMode, a second function block is
always necessary. It is not possible to trigger a move
function block with new parameters while it is active.

Options The data structure Options includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;

Motion function blocks

TX120066 Version: 1.3

Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE once the target
position was reached.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

7.1.5 Notes on modulo positioning
Modulo positioning (MC_MoveModulo [} 64]) is possible irrespective of the axis type. If may be used both for
linear or rotary axes, because TwinCAT makes no distinction between these types. A modulo axis has a
consecutive absolute position in the range ±∞. The modulo position of the axis is simply a piece of additional
information about the absolute axis position. Modulo positioning represents the required target position in a
different way. Unlike absolute positioning, where the user specifies the target unambiguously, modulo
positioning has potential pitfalls, because the required target position may be interpreted in different ways.

Settings in the TwinCAT System Manager

Modulo positioning refers to a modulo period that can be set in the TwinCAT System Manager. The
examples on this page assume a rotary axis with a modulo period of 360 degrees.

Motion function blocks

TX1200 67Version: 1.3

The modulo tolerance window defines a position window around the current modulo set position of the axis.
The window width is twice the specified value (set position ± tolerance value). A detailed description of the
tolerance window is provided below.

Special features of axis resets

Axis positioning always refers to the set position. The set position of an axis is normally the target position of
the last travel command. An axis reset (MC_Reset [} 20], controller activation with MC_Power [} 19]) can lead
to a set position that is different from that expected by the user, because in this case the current actual
position is used as the set position. The axis reset will reset any following error that may have occurred. If
this possibility is not considered, subsequent positioning may lead to unexpected behavior.

Example: An axis is positioned to 90°, with the result that subsequently the set position of the axis is exactly
90°. A further modulo travel command to 450° in positive direction results in a full turn, with the subsequent
modulo position of the axis of once again being exactly 90°. If an axis reset is carried out at this stage, the
set position may happen to be somewhat smaller or greater. The new value depends on the actual value of
the axis at the time of the reset. However, the next travel command will lead to different results. If the set
position is slightly less than 90°, a new travel command to 90° in positive direction only leads to minimum
motion. The deviation created by the reset is compensated, and the subsequent set position is once again
exactly 90°. However, if the set position after the axis reset is slightly more than 90°, the same travel
command leads to a full turn to reach the exact set position of 90°. This problem occurs if complete turns by
360° or multiples of 360° were initiated. For positioning to an angle that is significantly different from the
current modulo position, the travel command is unambiguous.

To solve the problem, a modulo tolerance window can be parameterized in the TwinCAT system manager.
This ensures that small deviations from the position that are within the window do not lead to different axis
behavior. If, for example, a window of 1° is parameterized, in the case described above the axis will behave
identically, as long the set position is between 89° and 91°. If the set position exceeds 90° by less than 1°,
the axis is re-positioned in positive direction at a modulo start. In both cases, a target position of 90°
therefore leads to minimum movement to exactly 90°. A target position of 450° leads to a full turn in both
cases.

Motion function blocks

TX120068 Version: 1.3

Figure: Effect of the modulo tolerance window - modulo target position 90° in positive direction

For values that are within the window range, the modulo tolerance window can therefore lead to movements
against the specified direction. For small windows this is usually not a problem, because system deviations
between set and actual position are compensated in both directions. This means that the tolerance window
may also be used for axes that may only be moved in one direction due to their construction.

Modulo positioning by less than one turn

Modulo positioning from a starting position to a non-identical target position is unambiguous and requires no
special consideration. A modulo target position in the range [0 ≤; position < 360] reaches the required target
in less than one whole turn. No motion occurs if target position and starting position are identical. Target
positions of more than 360 degrees lead to one or more full turns before the axis travels to the required
target position.

For a movement from 270° to 0°, a modulo target position of 0° (not 360°) should therefore be specified,
because 360 is outside the basic range and would lead to an additional turn.

For modulo positioning, a distinction is made between three different directions, i.e. positive direction,
negative direction and along shortest path (MC_Direction [} 105]). For positioning along the shortest path,
target positions of more than 360° are not sensible, because the movement towards the target is always
direct. In contrast to positive or negative direction, it is therefore not possible to carry out several turns before
the axis moves to the target.

Important: For modulo positioning with start type along shortest path , only modulo target positions within
the basic period (e.g. less than 360°) are permitted, otherwise an error is returned.

The following table shows some positioning examples:

Motion function blocks

TX1200 69Version: 1.3

Direction
(modulo start
type)

Absolute start
position

Modulo target
position

Relative travel
path

Absolute end
position

Modulo end
position

positive
direction

90.00 0.00 270.00 360.00 0.00

positive
direction

90.00 360.00 630.00 720.00 0.00

positive
direction

90.00 720.00 990.00 1080.00 0.00

negative
direction

90.00 0.00 -90.00 0.00 0.00

negative
direction

90.00 360.00 -450.00 -360.00 0.00

negative
direction

90.00 720.00 -810.00 -720.00 0.00

along shortest
path

90.00 0.00 -90.00 0.00 0.00

Modulo positioning with full turns

In principle, modulo positioning by one or full turns are no different than positioning to an angle that differs
from the starting position. No motion occurs if target position and starting position are identical. For a full
turn, 360° has to be added to the starting position.

The reset behavior described above shows that positioning with full turns requires particular attention. The
following table shows positioning examples for a starting position of approximately 90°. The modulo
tolerance window (TW) is set to 1°. Special cases for which the starting position is outside this window are
identified.

Direction
(modulo start
type)

Absolute start
position

Modulo target
position

Relative
travel path

Absolute end
position

Modulo end
position

Note

positive
direction

90.00 90.00 0.00 90.00 90.00

positive
direction

90.90 90.00 -0.90 90.00 90.00

positive
direction

91.10 90.00 358.90 450.00 90.00 outside TF

positive
direction

89.10 90.00 0.90 90.00 90.00

positive
direction

88.90 90.00 1.10 90.00 90.00 outside TF

positive
direction

90.00 450.00 360.00 450.00 90.00

positive
direction

90.90 450.00 359.10 450.00 90.00

positive
direction

91.10 450.00 718.90 810.00 90.00 outside TF

positive
direction

89.10 450.00 360.90 450.00 90.00

positive
direction

88.90 450.00 361.10 450.00 90.00 outside TF

positive
direction

90.00 810.00 720.00 810.00 90.00

Motion function blocks

TX120070 Version: 1.3

positive
direction

90.90 810.00 719.10 810.00 90.00

positive
direction

91.10 810.00 1078.90 1170.00 90.00 outside TF

positive
direction

89.10 810.00 720.90 810.00 90.00

positive
direction

88.90 810.00 721.10 810.00 90.00 outside TF

negative
direction

90.00 90.00 0.00 90.00 90.00

negative
direction

90.90 90.00 -0.90 90.00 90.00

negative
direction

91.10 90.00 -1.10 90.00 90.00 outside TF

negative
direction

89.10 90.00 0.90 90.00 90.00

negative
direction

88.90 90.00 -358.90 -270.00 90.00 outside TF

negative
direction

90.00 450.00 -360.00 -270.00 90.00

negative
direction

90.90 450.00 -360.90 -270.00 90.00

negative
direction

91.10 450.00 -361.10 -270.00 90.00 outside TF

negative
direction

89.10 450.00 -359.10 -270.00 90.00

negative
direction

88.90 450.00 -718.90 -630.00 90.00 outside TF

negative
direction

90.00 810.00 -720.00 -630.00 90.00

negative
direction

90.90 810.00 -720.90 -630.00 90.00

negative
direction

91.10 810.00 -721.10 -630.00 90.00 outside TF

negative
direction

89.10 810.00 -719.10 -630.00 90.00

negative
direction

88.90 810.00 -1078.90 -990.00 90.00 outside TF

Modulo calculations within the PLC program

In TwinCAT NC, all axis positioning tasks are executed based on the set position. The current actual position
is only used for control purposes. If a PLC program is to calculate a new target position based on the current
position, the current set position of the axis has to be used in the calculation (Axis.NcToPlc.ModuloSetPos
and Axis.NcToPlc.ModuloSetTurns).

It is not recommended to perform order calculations on basis of the modulo actual position available in the
cyclic axis interface (ModuloActPos and ModuloActTurns). Due to the larger or smaller control deviation of
the axis, errors can occur in the programmed sequence, such as unwanted rotations.

Motion function blocks

TX1200 71Version: 1.3

Application example

Within a system, a rotational axis carries out an operation. The starting position for each operation is 90°,
and with each cycle the axis is to be positioned by 360° in positive direction. Reverse positioning is not
permitted for mechanical reasons. Small reverse positioning is acceptable as part of position control
movements.

The modulo tolerance window is set to 1.5° in the System Manager. This ensures that undesirable axis turns
after an axis reset are avoided. Since the axis may only be positioned in positive direction, the command
MC_MoveModulo [} 64] with modulo start type positive direction (MC_Positive_Direction) is used. The
modulo target position is specified as 450°, since the original orientation is to be reached again after a full
turn by 360°. A modulo target position of 90° would not lead to any motion.

The process starts with a basic positioning movement (MC_MoveModulo [} 64]) to ensure that the starting
position is accurate. The step sequence then changes into an execution cycle. In the event of a fault, the
axis is reset with MC_Reset [} 20] and subsequently (at the start of the step sequence) moved to its valid
starting position. In this case, 90° is specified as the target position to enable this position to be reached as
quickly as possible. No motion occurs if the axis is already at the starting position.

Alternatively, the reset step may be carried out at the start of the step sequence, so that the axis is initialized
at the start of the process.

Motion function blocks

TX120072 Version: 1.3

7.1.6 MC_MoveVelocity

MC_MoveVelocity starts a continuous movement with specified velocity and direction. The movement can be
stopped through a Stop command.

The InVelocity output is set once the constant velocity is reached. Once constant velocity has been reached,
the block function is complete, and no further monitoring of the movement takes place. If the command is
aborted during the acceleration phase, the CommandAborted or, on error, the Error output is set.

Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the
axis parameters. A motion command such as MC_MoveAbsolute then automatically leads to
decoupling of the axis, after which the command is executed. In this case the only available buffer
mode is Aborting.

Inputs

VAR_INPUT
Execute : BOOL; (* B *)
Velocity : LREAL; (* E *)
Acceleration : LREAL; (* E *)
Deceleration : LREAL; (* E *)
Jerk : LREAL; (* E *)
Direction : MC_Direction := MC_Positive_Direction; (* E *)
BufferMode : MC_BufferMode; (* E *)
Options : ST_MoveOptions; (* V *)
END_VAR

MC_BufferMode [} 103] MC_Direction [} 105]

Execute The command is executed with a rising edge at
Execute input.

Velocity Travel velocity (>0).
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

Direction Positive or negative direction of travel of type
MC_Direction [} 105].

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
transition condition from the current to the next
command is also defined by the BufferMode.
If the command is applied to a coupled slave axis,

Motion function blocks

TX1200 73Version: 1.3

only the buffer mode Aborting is possible.
To use the BufferMode, a second function block is
always necessary. It is not possible to trigger a move
function block with new parameters while it is active.

Options The data structure Options includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
InVelocity : BOOL; (* B *)
Busy : BOOL; (* E *)
Active : BOOL; (* E *)
CommandAborted : BOOL; (* E *)
Error : BOOL; (* B *)
ErrorID : UDINT; (* E *)
END_VAR

InVelocity The output InVelocity becomes TRUE, as soon as
the constant velocity is reached. It may switch back
to FALSE, if the velocity differs.
The function block remains Busy and Active until a
new command is issued.

Busy The Busy output becomes TRUE as soon as the
command is started with Execute and remains TRUE
as long as the function block is active. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
CommandAborted or Error, is set.

Active Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Motion function blocks

TX120074 Version: 1.3

7.1.7 MC_MoveContinuousAbsolute

MC_MoveContinuousAbsolute starts positioning to an absolute target position and monitors the axis
movement over the whole travel path. At the target position a constant end velocity is reached, which is
maintained. The InEndVelocity output is set once the target position was reached. Otherwise the
CommandAborted or, on error, the Error output is set.

Once the target position has been reached, the block function is complete and the axis is no longer
monitored.

Inputs

VAR_INPUT
Execute : BOOL;
Position : LREAL;
Velocity : LREAL;
EndVelocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

MC_BufferMode [} 103]

Execute The command is executed with a rising edge at input
Execute.

Position Absolute target position
Velocity Maximum velocity for the movement to the target

position (>0).
EndVelocity End velocity to be maintained once the target position

has been reached.
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

Motion function blocks

TX1200 75Version: 1.3

A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Outputs
VAR_OUTPUT
InEndVelocity : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

InEndVelocity The InEndVelocity output becomes TRUE once the
target position was reached.
The function block remains Busy and Active until a
new command is issued.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

MC_MoveContinuousAbsolute is not implemented for fast/slow axes.

Motion function blocks

TX120076 Version: 1.3

7.1.8 MC_MoveContinuousRelative

MC_MoveContinuousRelative starts positioning by a relative distance and monitors the axis movement over
the whole travel path. At the target position a constant end velocity is reached, which is maintained. The
InEndVelocity output is set once the target position was reached. Otherwise the CommandAborted or, on
error, the Error output is set.

Once the target position has been reached, the block function is complete and the axis is no longer
monitored.

Inputs

VAR_INPUT
Execute : BOOL;
Distance : LREAL;
Velocity : LREAL;
EndVelocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

MC_BufferMode [} 103]

Execute The command is executed with a rising edge at input
Execute.

Distance Relative distance to be used for positioning.
Velocity Maximum velocity for the movement over the

distance (>0).
EndVelocity End velocity to be maintained after the relative

distance
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.

Motion function blocks

TX1200 77Version: 1.3

A second function block is required to use the buffer
mode. It is not possible to trigger a move block with
new parameters while it is active.

Options The data structure option includes additional, rarely
required parameters. The input can normally remain
open.

General rules for MC function blocks [} 14]

Outputs
VAR_OUTPUT
InEndVelocity : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

InEndVelocity The InEndVelocity output becomes TRUE once the
target position was reached.
The function block remains Busy and Active until a
new command is issued.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new order. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed. If the
command was buffered, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have been stopped, or the
running command may have been followed by a
further Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

MC_MoveContinuousRelative is not implemented for fast/slow axes.

Motion function blocks

TX120078 Version: 1.3

7.1.9 MC_Halt

MC_Halt stops an axis with a defined braking ramp.

In contrast to MC_Stop [} 80], the axis is not locked against further movement commands. The axis can
therefore be restarted through a further command during the braking ramp or after it has come to a halt.

Travel commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. A motion command such as MC_Halt then automatically leads to uncoupling of the axis, after
which the command is executed. In this case only Buffer-ModeAborting is possible.

Inputs

VAR_INPUT
Execute : BOOL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_MoveOptions;
END_VAR

MC_BufferMode [} 103]

Execute The command is executed with a rising edge at input
Execute.

Deceleration Deceleration (≥0). If the value is 0, the deceleration
parameterized with the last Move command is used.
For safety reasons MC_Halt and MC_Stop [} 80]
cannot be executed with weaker dynamics than the
currently active travel command. The
parameterization is adjusted automatically, if
necessary.

Jerk Jerk (≥0). If the value is 0, the jerk parameterized with
the last Move command is used.
For safety reasons MC_Halt and MC_Stop [} 80]
cannot be executed with weaker dynamics than the
currently active travel command. The
parameterization is adjusted automatically, if
necessary.

BufferMode The BufferMode [} 103] is analyzed, if the axis is
already executing another command. The running
command can be aborted, or the new command
becomes active after the running command. The
BufferMode also determines the transition condition
from the current to the next command.
If the command is applied to a coupled slave axis
used, the only available buffer mode is Aborting.
Special characteristics of MC_Halt: The MC_buffer
mode has no effect, if the command is executed
when the system is at a standstill. The blending
modes MC_BlendingNext and MC_BlendingLow do
not change the last target position, although they can

Motion function blocks

TX1200 79Version: 1.3

result in a change in dynamics (deceleration) of the
stop ramp. The modes MC_BlendingPrevious and
MC_BlendingHigh extend the travel to the original
target position. The stop ramp is only initiated when
this position is reached (defined braking point).

Options Currently not implemented - The data structure option
includes additional, rarely required parameters. The
input can normally remain open.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE, if the axis was
stopped and has come to a standstill.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs, Done,
CommandAborted or Error, is set.

Active Active indicates that the command is executed If the
command was queued, it becomes active once a
running command is completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed. The running command may have been
followed by a Move command.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Motion function blocks

TX120080 Version: 1.3

7.1.10 MC_Stop

MC_Stop stops an axis with a defined deceleration ramp and locks it against other motion commands. The
function block is therefore suitable for stops in special situations, in which further axis movements are to be
prevented.

NOTICE
At the same time the axis is blocked for other motion commands. The axis can only be restarted once the
Execute signal has been set to FALSE after the axis has stopped. A few cycles are required to release the
axis after a falling edge of Execute. During this phase the Busy output remains TRUE, and the function
block has to be called until Busy becomes FALSE.

NOTICE
The locking of the axis is canceled with an MC_Reset.

Alternatively, the axis can be stopped with MC_Halt [} 78] without locking. MC_Halt is preferable for normal
movements.

Motion commands can be applied to coupled slave axes, if this option was explicitly activated in the axis
parameters. A motion command such as MC_Stop then automatically leads to decoupling of the axis, after
which the command is executed.

Inputs

VAR_INPUT
Execute : BOOL;
Deceleration : LREAL;
Jerk : LREAL;
Options : ST_MoveOptions;
END_VAR

Execute The command is executed with a rising edge at input
Execute.
The axis is locked during the stop. The axis can only
be restarted once the Execute signal has been set to
FALSE after the axis has stopped.

Deceleration Deceleration (≥0). If the value is 0, the deceleration
parameterized with the last move command takes
effect. For safety reasons
MC_Stop and MC_Halt cannot be executed with
weaker dynamics than the currently active motion
command. The parameterization is adjusted
automatically, if necessary.

Jerk Jerk (≥0). If the value is 0, the jerk parameterized with
the last Move command takes effect. For safety
reasons
MC_Stop and MC_Halt cannot be executed with
weaker dynamics than the currently active motion
command. The parameterization is adjusted
automatically, if necessary.

Motion function blocks

TX1200 81Version: 1.3

Options Currently not implemented - The data structure
Options includes additional, rarely required
parameters. The input can normally remain open.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE, if the axis was
stopped and has come to a standstill.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new order.
Notice Busy remains TRUE as long as the axis is
locked. The axis is only unlocked and Busy
becomes FALSE when Execute is set to FALSE.

Active Active indicates that the function block is controlling
the axis.
Notice Active remains TRUE as long as the axis is
locked. The axis is only unlocked and Active
becomes FALSE when Execute is set to FALSE.

CommandAborted Becomes TRUE, if the command could not be fully
executed.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

Motion function blocks

TX120082 Version: 1.3

7.2 Superposition

7.2.1 MC_MoveSuperimposed

MC_MoveSuperimposed starts a relative superimposed movement while the axis is already moving. The
current movement is not interrupted. The Done output is set once the superimposed movement is
completed. The original subordinate movement may continue to be active and is monitored by the
associated Move function block.

The superposition function becomes clear, if one considers two axes moving at the same speed. If one of the
axes is superimposed by MC_MoveSuperimposed, it will precede or follow the other axis as determined by
the Distance parameter. Once the superimposed movement is completed, the Distance between the two
axes is maintained.

MC_MoveSuperimposed can be applied to single axes, master axes or slave axes. For a slave axis the
superimposed movement only affects the slave axis. If the function is used for a master axis, the slave will
follow the superimposed movement of the due master due to the axis coupling.

Since MC_MoveSuperimposed executes a relative superimposed movement, the target position for the
subordinate travel command changes by Distance.

The superimposed movement depends on the position of the main movement. This means that a velocity
change of the main movement also results in a velocity change in the superimposed movement, and that the
superimposed movement is inactive if the main movement stops. The Options parameter can be used to
specify whether the superimposed movement is to be aborted or continued if the main movement stops.

Application examples for MC_MoveSuperimposed [} 84]

Inputs

VAR_INPUT
Execute : BOOL; (* B *)
Mode : E_SuperpositionMode;
Distance : LREAL; (* B *)
VelocityDiff : LREAL; (* E *)
Acceleration : LREAL; (* E *)
Deceleration : LREAL; (* E *)
Jerk : LREAL; (* E *)
VelocityProcess : LREAL; (* V *)
Length : LREAL; (* V *)
Options : ST_SuperpositionOptions; (* V *)
END_VAR

ST_SuperpositionOptions [} 107] E_SuperpositionMode [} 106]

Execute The command is executed with a rising edge at input Execute.

Motion function blocks

TX1200 83Version: 1.3

Mode Mode [} 106] determines the type of the superimposed motion.
Distance Relative distance to catch up. A positive value means increase in

velocity by an amount required to cover the additional distance,
compared with the unaffected movement. A negative value results in
braking and falling back by this distance.

VelocityDiff Maximum velocity difference to the current velocity (basic velocity) of
the axis (>0).
For this parameter a distinction may have to be made, depending on
the superimposition direction (acceleration or deceleration). If, for
example, a direction reversal is not permitted, the maximum available
acceleration corresponds to the maximum velocity, and the maximum
deceleration to stop. Therefore, there are two possible maximum values
for VelocityDiff:
1. 1. Distance > 0 (axis accelerates)
VelocityDiff = maximum speed - basic speed
2. Distance > 0 (axis decelerates)
VelocityDiff = basic speed

Acceleration Acceleration (≥0). If the value is 0, the standard acceleration from the
axis configuration in the System Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard deceleration from the
axis configuration in the System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the axis configuration
in the System Manager is used.

VelocityProcess : Mean process speed in the axis (>0).If the basic velocity during
superposition is constant, the set axis velocity can be specified.

Length Distance over which the superimposed movement is available. The
Mode parameter defines how this distance is interpreted.

Options The data structure option includes additional, rarely required
parameters. The input can normally remain open.

Options. AbortOption AbortOption defines the behavior
when the subordinate movement
stops. The superimposed
movement can be aborted or
continued later.

General rules for MC function blocks [} 14]

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
Warning : BOOL;
WarningID : UDINT;
ActualVelocityDiff : LREAL;
ActualDistance : LREAL;
ActualLength : LREAL;
ActualAcceleration : LREAL;
ActualDeceleration : LREAL;

END_VAR

Done The Done output becomes TRUE, once the
superimposed movement was completed
successfully.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy

Motion function blocks

TX120084 Version: 1.3

becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Active indicates that the command is executed
CommandAborted Becomes TRUE, if the command was aborted by

another command and could therefore not be
completed.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.
Warning Warning becomes TRUE if the action cannot be

executed completely.
WarningID The block returns warning 4243hex (16963) if the

compensation was incomplete due to the
parameterization (distance, velocity, etc.). In this
case compensation is implemented as far as
possible. The user has to decide whether to interpret
this warning message within his application as a
proper error or merely as a warning.

ActualVelocityDiff: Actual velocity difference during the superimposed
motion (ActualVelocityDiff ≤ VelocityDiff).

ActualDistance: Actual superimposed distance. The block tries to
reach the full Distance as specified. This distance
may not be reached fully, depending on the
parameterization (VelocityDiff, Acceleration,
Deceleration, Length, Mode). In this case the
maximum possible distance is superimposed.
(ActualDistance ≤ Distance).

ActualLength Actual travel during superimposed motion
(ActualLenght ≤ Length).

ActualAcceleration Actual acceleration of the superimposed movement
(ActualAcceleration≤Acceleration).

ActualDeceleration Actual deceleration of the superimposed movement
(ActualDeceleration≤Deceleration).

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.2.2 Application examples for MC_MoveSuperimposed
The function block MC_MoveSuperimposed [} 82] starts a superimposed movement on an axis that is
already moving. For this superposition various applications are available that are described below.

Motion function blocks

TX1200 85Version: 1.3

Distance correction for products on a conveyor belt

A conveyor belt consists of individual segments, each driven by an axis. The conveyor belt is used for
transporting packages, the spacing of which is to be corrected. To this end a conveying segment must briefly
run faster or slower relative to a following segment.

The measured distance is 1800 mm and is to be reduced to 1500 mm. Conveyor belt 1 should be
accelerated in order to reduce the distance. The correction must be completed by the time the end of belt 1
is reached in order to prevent the package being pushed onto the slower belt 2.

Since in this situation conveyer 1 has to be accelerated the drive system requires a velocity reserve,
assumed to be 500 mm/s in this case. In practice this value can be determined from the difference between
the maximum conveyor speed and the current set velocity.

For parameterization of function block MC_MoveSuperimposed [} 82] this means:

Distance = 1800 mm - 1500 mm = 300 mm (distance correction)

Length = 1000 mm (available distance up to the end of belt 1)

Mode = SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION

VelocityDiff = 500 mm/s

The mode defines that the distance Length up to the end of the conveyor belt is used for the correction and
that the correction is completed at this point. The system uses the internally calculated velocity as degree of
freedom. VelocityDiff therefore is the upper limit for the velocity change in this case.

Alternatively the correction could be achieved by decelerating belt 2. In this case Distance must be negative
and the available correction distance Length is the distance between the right-hand package and the end of
the belt. The maximum possible velocity change VelocityDiff corresponds to the current set velocity. Belt 2
could therefore be decelerated down to zero, if necessary.

Phase shift of a print roller

A print roller rotates with constant peripheral velocity at the same speed as conveyor belt on which a
workpiece to be printed is transported. For synchronization with the workpiece the print roller is to be
advanced by a certain angle (phase shift).

Motion function blocks

TX120086 Version: 1.3

The phase shift can be implemented in two ways. The angle can be corrected as quickly as possible,
resulting in a short-term strong increase in the velocity of the print roller. Alternatively a correction distance
can be defined within which the correction can occur, e.g. a complete roller revolution. This leads to the
following possible parameterizations for function block MC_MoveSuperimposed [} 82]:

1. Fast correction:

Distance = 7.1°

Length = 360° (maximum possible correction distance)

Mode = SUPERPOSITIONMODE_LENGTHREDUCTION_LIMITEDMOTION

VelocityDiff = 30°/s (velocity reserve)

The mode specifies that the correction distance should be as short as possible. The stated value for Length
therefore is an upper limit that can be chosen freely (but not too small).

Alternatively SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION can be used as Mode. In
this case the whole correction distance would be up to 367.1°. Since the distance should be as short as
possible both modes are equivalent in this case.

2. Slow correction:

Distance = 7.1°

Length = 360° (correction distance)

Mode = SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION

VelocityDiff = 30°/s (velocity reserve)

The mode specifies that the correction distance should be utilized fully and the velocity change should be
kept as small as possible. The stated value for VelocityDiff therefore is an upper limit that can be chosen
freely (but not too small).

Drilling unit

A drilling unit should drill two holes in a moving workpiece. Synchronization for the first hole is assumed to be
achieved via the flying saw (MC_GearInPos) and is not be considered here. After the first operation the
device must be moved by certain distance relative to the moving workpiece.

Motion function blocks

TX1200 87Version: 1.3

The drilling unit is to be advanced by 250 mm relative to the workpiece after the first hole has been drilled.
Meanwhile the workpiece covers a distance of 400 mm. From this position the drilling unit is once again
synchronous with the workpiece and the second hole can be drilled.

Here too two options are available that differ in terms of the velocity change of the drilling device and
therefore in the mechanical strain.

Parameterization of function block MC_MoveSuperimposed [} 82]:

1. Fast correction:

Distance = 250 mm

Length = 400 mm

Mode = SUPERPOSITIONMODE_LENGTHREDUCTION_ADDITIVEMOTION

VelocityDiff = 500 mm/s (velocity reserve of the drilling device)

The mode specifies that the correction distance should be as short as possible. The stated value for Length
therefore is an upper limit that can be chosen freely (but not too small). The drilling device can travel a larger
distance since Length refers to the workpiece plus a relative change in position.

2. Slow correction:

Distance = 250 mm

Length = 400 mm

Mode = SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION

VelocityDiff = 500 mm/s (velocity reserve of the drilling device)

The mode specifies that the correction distance should be utilized fully and the velocity change should be
kept as small as possible. The stated value for VelocityDiff therefore is an upper limit that can be chosen
freely (but not too small). During the change in position the workpiece covers the distance Length, the drilling
unit travels 650 mm due to the additional correction distance (Length + Distance).

7.2.3 MC_AbortSuperposition

Motion function blocks

TX120088 Version: 1.3

The MC_AbortSuperposition block terminates a superimposed movement started by
MC_MoveSuperImposed [} 82], without stopping the subordinate axis movement.

A full axis stop can be achieved with MC_Stop [} 80] or MC_Halt [} 78], if necessary. In this case
MC_AbortSuperposition does not have to be called.

Inputs
VAR_INPUT
Execute : BOOL;
END_VAR

Execute The command is executed with a rising edge and the
superimposed movement is completed.

Outputs
VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE when the superimposed movement
was successfully terminated.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state.

Error Becomes TRUE, as soon as an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.3 Homing

7.3.1 MC_Home

Calibration of the axis (referencing) is carried out with the function block MC_Home.

Motion function blocks

TX1200 89Version: 1.3

Referencing mode is set in the TwinCAT System Manager via the Incremental encoder tab. Depending on
the connected encoder system, different procedures are possible (see also Reference mode for inkremental
encoder)

Inputs

VAR_INPUT
Execute : BOOL;
Position : LREAL := DEFAULT_HOME_POSITION;
HomingMode : MC_HomingMode;
BufferMode : MC_BufferMode;
Options : ST_HomingOptions;
bCalibrationCam : BOOL;
END_VAR

MC_BufferMode [} 103] MC_HomingMode [} 106]

Execute The command is executed with a rising edge at Execute input.
Position Absolute reference position to which the axis is set after homing.

Alternatively the constant DEFAULT_HOME_POSITION can be used
here. In this case, the Reference position for homing specified in the
TwinCAT System Manager is used.
Notice Since the reference position is generally set during the
motion, the axis will not stop exactly at this position. The standstill
position deviates by the braking distance of the axis, nevertheless
the calibration is exact.

HomingMode HomingMode [} 106] determines in which way the calibration is carried
out.
• MC_DefaultHoming

Initiates standard homing.
• MC_Direct

Sets the axis position directly to Position without executing a move-
ment.

• MC_ForceCalibration
Enforces the "axis is calibrated" state. No movement takes place,
and the position remains unchanged.

• MC_ResetCalibration
Resets the calibration state of the axis. No movement takes place,
and the position remains unchanged.

BufferMode Currently not implemented - BufferMode is analyzed if the axis is
already executing another command. The running command can be
aborted, or the new command becomes active after the running
command. The BufferMode also determines the transition condition
from the current to the next command.

Options The data structure Options includes additional, rarely required
parameters. The input can normally remain open.

Options. ClearPositionLag ClearPositionLag is only effective
in MC_Direct mode.
ClearPositionLagcan optionally be
used to set the set and actual
positions to the same value. In this
case the following error is cleared.

bCalibrationCam bCalibrationCam reflects the signal of a referencing cam that may enter
the controller via a digital input.

General rules for MC function blocks [} 14]

http://infosys.beckhoff.de/content/1033/tcadsdevicenc/html/tcncadsappendix.htm
http://infosys.beckhoff.de/content/1033/tcadsdevicenc/html/tcncadsappendix.htm

Motion function blocks

TX120090 Version: 1.3

Outputs

VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done The Done output becomes TRUE, if the axis was
calibrated and has come to a standstill.

Busy The Busy output becomes TRUE when the command
is started with Execute and remains TRUE as long as
the movement command is processed. If Busy
becomes FALSE again, the function block is ready
for a new job. At the same time one of the outputs,
Done, CommandAborted or Error, is set.

Active Currently not implemented - Active indicates that the
command is running. If the command was queued, it
becomes active once a running command is
completed.

CommandAborted Becomes TRUE, if the command could not be fully
executed.

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

General rules for MC function blocks [} 14]

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Note

The referencing process has several phases. The referencing state (calibration state) is signaled in the cyclic
interface of the axis (Axis.NcToPlc.HomingState). The following diagram illustrates the individual process
phases after starting of the MC_Home block.

If an axis is to be referenced without reference cam, i.e. only based on the sync pulse of the sensor, the
reference cam can be simulated via the PLC program. The bCalibrationCam signal is initially activated and
then cancelled, if Axis.NcToPlc.HomingState [} 102] is equal or greater 4.

Motion function blocks

TX1200 91Version: 1.3

7.4 Manual motion

7.4.1 MC_Jog

The MC_Jog function block enables an axis to be moved via manual keys. The key signal can be linked
directly with the JogForward and JogBackwards inputs. The required operating mode is specified via the
mode input. An inching mode for moving the axis by a specified distance whenever the key is pressed is also
available. The velocity and dynamics of the motion can be specified depending on the mode.

Inputs
VAR_INPUT
JogForward : BOOL;
JogBackwards : BOOL;
Mode : E_JogMode;
Position : LREAL;
Velocity : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
END_VAR

E_JogMode [} 108]

JogForward The command is executed with rising edge, and the
axis is moved in positive direction of
travel. Depending on the operation mode (see mode),
the axis moves as long as the signal remains TRUE,
or it stops automatically after a specified distance.
During the motion no further signal edges are

Motion function blocks

TX120092 Version: 1.3

accepted (this includes the JogBackwards input). If
signal edges occur simultaneously at the JogForward
and JogBackwards inputs, JogForward has priority.

JogBackwards The command is executed with rising edge and the
axis moved in negative direction of travel.
JogForward and JogBackwards should be triggered
alternatively, although they are also mutually locked
internally.

Mode The Mode [} 108] input specifies the mode for
manual operation.
MC_JOGMODE_STANDARD_SLOW:
the axis moves as long as the signal at one of the jog
inputs is TRUE. The low velocity for manual functions
specified in the TwinCAT System Manager and
standard dynamics are used. In this operation mode
the position, velocity and dynamics data specified in
the function block have no effect.
MC_JOGMODE_STANDARD_FAST:
the axis moves as long as the signal at one of the jog
inputs is TRUE. The high velocity for manual
functions specified in the TwinCAT System Manager
and standard dynamics are used. In this mode the
position, velocity and dynamics data specified in the
function block have no effect.
MC_JOGMODE_CONTINOUS:
the axis is moved as long as the signal at one of the
jog inputs is TRUE. The velocity and dynamics data
specified by the user are used. The position has no
effect.
MC_JOGMODE_INCHING:
with rising edge at one of the jog inputs the axis is
moved by a certain distance, which is specified via
the position input. The axis stops automatically,
irrespective of the state of the jog inputs. A new
movement step is only executed once a further rising
edge is encountered. With each start the velocity and
dynamics data specified by the user are used.
MC_JOGMODE_INCHING_MODULO:
with rising edge at one of the jog inputs the axis is
moved by a certain distance which is specified via the
position input. The axis position will snap to an
integer multiple of the position parameter. The axis
stops automatically, irrespective of the state of the
jog inputs. A new movement step is only executed
once a further rising edge is encountered. With each
start the velocity and dynamics data specified by the
user are used.

Position relative distance for movements in
MC_JOGMODE_INCHING operation mode.

Velocity Maximum travel velocity (>0).
Acceleration Acceleration (≥0). If the value is 0, the standard

acceleration from the axis configuration in the System
Manager is used.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the
System Manager is used.

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.

Motion function blocks

TX1200 93Version: 1.3

The parameters Position, Velocity, Acceleration, Deceleration and Jerk are not used in the
operation modes MC_JOGMODE_STANDARD_SLOW and MC_JOGMODE_STANDARD_FAST
and can remain unassigned.

Outputs
VAR_OUTPUT
Done : BOOL;
Busy : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

Done Becomes TRUE if a movement is completed
successfully.

Busy Becomes TRUE as soon as the function block is
active, and becomes FALSE when it has returned to
its initial state. Only then can a further edge be
accepted at the jog inputs.

Active Active indicates that the axis is moved via the jog
function.

CommandAborted Becomes TRUE if the process is interrupted by an
external event, e.g. by the call up of MC_Stop [} 80].

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Axis : AXIS_REF;
END_VAR

AXIS_REF [} 101]

Axis Axis data structure

The axis data structure of type AXIS_REF [} 101] addresses an axis unambiguously within the system. Among
other parameters it contains the current axis status, including position, velocity or error state.

7.5 Axis coupling

7.5.1 MC_GearIn

Motion function blocks

TX120094 Version: 1.3

The function block MC_GearIn activates a linear master-slave coupling (gear coupling). The block accepts a
fixed gear ratio in numerator/denominator format.

The slave axis can be coupled to the master axis when stationary. This block cannot be used for
synchronization while the master axis is in motion. In this case the Flying Saw block MC_GearInVelo or
MC_GearInPos can be used.

The slave axis can be uncoupled with the function block MC_GearOut [} 97]. If the slave is decoupled while
it is moving, then it retains its velocity and can be halted using MC_Stop [} 80]or MC_Halt [} 78].

Alternatively, the block MC_GearInDyn [} 95] with dynamically variable gear ratio is available.

Inputs

VAR_INPUT
Execute : BOOL;
RatioNumerator : LREAL;
RatioDenominator : UINT;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_GearInOptions;
END_VAR

MC_BufferMode [} 103]

Execute The command is executed with a rising edge at input
Execute.

RatioNumerator Gear ratio numerator.
Alternatively, the gear ratio can be specified in the
numerator as a floating point value, if the
denominator is 1.

RatioDenominator Gear ratio denominator
Acceleration Acceleration (≥0). (currently not implemented)
Deceleration Deceleration (≥0). (currently not implemented)
Jerk Jerk (≥0). (currently not implemented)
BufferMode Currently not implemented
Options Currently not implemented

For a 1:4 ratio the RatioNumerator must be 1, the RatioDenominator must be 4. Alternatively, the
RatioDenominator may be 1, and the gear ratio can be specified as floating-point number 0.25 under
RatioNumerator. The RatioNumerator may be negative.

Outputs

VAR_OUTPUT
InGear : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

InGear Becomes TRUE, if the coupling was successful.
Busy The Busy output becomes TRUE when the command

is started with Execute and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs InGear,
CommandAborted or Error is set.

Motion function blocks

TX1200 95Version: 1.3

Active Active indicates that the command is executed
(currently Active=Busy, see BufferMode)

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have become decoupled
during the coupling process (simultaneous command
execution).

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Master : AXIS_REF;
Slave : AXIS_REF;
END_VAR

AXIS_REF [} 101] AXIS_REF [} 101]

Master Master axis data structure.
Slave Axis data structure of the Slave.

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.5.2 MC_GearInDyn

The function block MC_GearIn activates a linear master-slave coupling (gear coupling). The gear ratio can
be adjusted dynamically during each PLC cycle. Hence a controlled master/slave coupling can be build up.
The Acceleration parameter has a limiting effect in situations with large gear ratio variations.

The slave axis can be uncoupled with the function block MC_GearOut [} 97]. If the slave is decoupled while
it is moving, then it retains its velocity and can be halted using MC_Stop [} 80]or MC_Halt [} 78].

Alternatively, the block MC_GearIn [} 93] with dynamically variable gear ratio is available.

Inputs

VAR_INPUT
Enable : BOOL;
GearRatio : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_GearInDynOptions;
END_VAR

Motion function blocks

TX120096 Version: 1.3

MC_BufferMode [} 103]

Enable Coupling is activated with a rising edge at input
Enable. The gear ratio can be changed cyclically as
long as Enable is TRUE.
The command is terminated if Enable becomes
FALSE after coupling. The gear ratio is frozen at its
last value, but the slave is not decoupled.

GearRatio Gear ratio as floating point value. The gear ratio can
be changed cyclically as long as Enable is TRUE. If
ENABLE is FALSE, the gear ratio remains
unchanged.

Acceleration Acceleration (≥0). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used. The parameter limits the
acceleration of the slave in situations with large gear
ratio variations.
The maximum acceleration is only reached at the
maximum master velocity. Otherwise the slave
acceleration is below this value when the gear ratio
changes significantly.

Deceleration Deceleration (≥0). (Not implemented)
Jerk Jerk (≥0). (Not implemented)
BufferMode Currently not implemented
Options Currently not implemented

Outputs

VAR_OUTPUT
InGear : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

InGear Becomes TRUE, if the coupling was successful.
Busy The Busy output becomes TRUE when the command

is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs InGear,
CommandAborted or Error is set.

Active Active indicates that the command is executed
(currently Active=Busy, see BufferMode)

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have become decoupled
during the coupling process (simultaneous command
execution).

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Master : AXIS_REF;
Slave : AXIS_REF;
END_VAR

Motion function blocks

TX1200 97Version: 1.3

AXIS_REF [} 101] AXIS_REF [} 101]

Master Master axis data structure.
Slave Axis data structure of the Slave.

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.5.3 MC_GearOut

The function block MC_GearOut deactivates a master-slave coupling.

 WARNING
No standstill of the axis due to decoupling
When a slave axis is uncoupled during the movement, it is not stopped automatically but reaches a
constant velocity at which it continues to travel infinitely.

You can stop the axis with the function blocks MC_Halt [} 78] or MC_Stop [} 80].

NOTICE
If the setpoint generator type of the axis is set to "7 phases (optimized)", the slave axis assumes an
acceleration-free state after uncoupling and continues to move with the resulting constant velocity. There is
no positioning based on the master travel path calculated with the coupling factor. Instead, the behavior
matches the behavior after a MC_MoveVelocity command. In TwinCAT 2.10, the setpoint generator type
can be selected by the user. From TwinCAT 2.11, the setpoint generator type is set to "7 phases
(optimized)". The behavior described here is the result of a project update from TwinCAT 2.10 to TwinCAT
2.11. Depending on the circumstances, an update of existing applications to version 2.11 may necessitate
an adaptation of the PLC program.

Inputs
VAR_INPUT
 Execute : BOOL;
 Options : ST_GearOutOptions;
END_VAR

Execute The command is executed with a rising edge at input Execute.
Options Currently not implemented

Outputs
VAR_OUTPUT
 Done : BOOL;
 Busy : BOOL;
 Error : BOOL;
 ErrorID : UDINT;
END_VAR

Done Becomes TRUE, if the axis was successfully uncoupled.
Busy The Busy output becomes TRUE when the command is started with Execute and

remains TRUE as long as the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the same time one of the outputs,
Done or Error, is set.

Error Becomes TRUE if an error occurs.

Motion function blocks

TX120098 Version: 1.3

ErrorID If the error output is set, this parameter supplies the error number.

Inputs/outputs
VAR_IN_OUT
 Slave : AXIS_REF;
END_VAR

Slave Axis data structure of the Slave [} 101].

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

7.5.4 MC_GearInMultiMaster

The function block MC_GearInMultiMaster is used to activate linear master/slave coupling (gear coupling) for
up to four different master axes. The gear ratio can be adjusted dynamically during each PLC cycle. The
slave movement is determined by the superimposed master movements. The Acceleration parameter has a
limiting effect in situations with large gear ratio variations.

The slave axis can be uncoupled with the function block MC_GearOut [} 97]. If the slave is decoupled while it
is moving, then it retains its velocity and can be halted using MC_Stop [} 80].

If fewer than four masters are used, an empty data structure can be transferred for parameters Master2 to
Master4 (the axis ID must be 0).

Inputs

VAR_INPUT
Enable : BOOL;
GearRatio1 : LREAL;
GearRatio2 : LREAL;
GearRatio3 : LREAL;
GearRatio4 : LREAL;
Acceleration : LREAL;
Deceleration : LREAL;
Jerk : LREAL;
BufferMode : MC_BufferMode;
Options : ST_GearInMultiMasterOptions;
END_VAR

Enable Coupling is activated with a rising edge at input
Enable. The gear ratio can be changed cyclically as
long as Enable is TRUE.

Motion function blocks

TX1200 99Version: 1.3

The command is terminated if Enable becomes
FALSE after coupling. The gear ratio is frozen at its
last value, but the slave is not decoupled.

GearRatio1 Gear ratio as floating point value for the first master
axis. The gear ratio can be changed cyclically as long
as Enable is TRUE. If ENABLE is FALSE, the gear
ratio remains unchanged.

GearRatio2 Gear ratio as floating point value for the second
master axis. The gear ratio can be changed cyclically
as long as Enable is TRUE. If ENABLE is FALSE, the
gear ratio remains unchanged.

GearRatio3 Gear ratio as floating point value for the third master
axis. The gear ratio can be changed cyclically as long
as Enable is TRUE. If ENABLE is FALSE, the gear
ratio remains unchanged.

GearRatio4 Gear ratio as floating point value for the fourth master
axis. The gear ratio can be changed cyclically as long
as Enable is TRUE. If ENABLE is FALSE, the gear
ratio remains unchanged.

Acceleration Acceleration (≥0). If the value is 0, the standard
acceleration from the axis configuration in the System
Manager is used. The parameter limits the
acceleration of the slave in situations with large gear
ratio variations.

Deceleration Deceleration (≥0). If the value is 0, the standard
deceleration from the axis configuration in the System
Manager is used. The parameter limits the
deceleration of the slave in situations with large gear
ratio variations. Used only for the option
"Advanced Slave Dynamics".

Jerk Jerk (≥0). If the value is 0, the standard jerk from the
axis configuration in the System Manager is used.
The parameter limits the jerk of the slave in situations
with large gear ratio variations. Used only for the
option "Advanced Slave Dynamics".

BufferMode Currently not implemented
Options. AdvancedSlaveDynamics Exchanges the internal algorithm of the function

block. This makes it possible to synchronise to
masters already in motion. Acceleration and
deceleration should only be parameterized
symmetrically. If jerk presets are too large, this is
reduced to the extent that a change from zero to the
parameterized acceleration / deceleration can take
place in one NC cycle. The resolution of the
acceleration / deceleration thus depends directly on
the suitable parameterization of the jerk value.

Outputs

VAR_OUTPUT
InGear : BOOL;
Busy : BOOL;
Active : BOOL;
CommandAborted : BOOL;
Error : BOOL;
ErrorID : UDINT;
END_VAR

InGear Becomes TRUE, if the coupling was successful.

Motion function blocks

TX1200100 Version: 1.3

Busy The Busy output becomes TRUE when the command
is started with Enable and remains TRUE as long as
the command is processed. If Busy becomes FALSE
again, the function block is ready for a new job. At the
same time one of the outputs InGear,
CommandAborted or Error is set.

Active Active indicates that the command is executed
(currently Active=Busy, see BufferMode)

CommandAborted Becomes TRUE, if the command could not be fully
executed. The axis may have become decoupled
during the coupling process (simultaneous command
execution).

Error Becomes TRUE if an error occurs.
ErrorID If the error output is set, this parameter supplies the

error number.

Inputs/outputs

VAR_IN_OUT
Master1 : AXIS_REF;
Master2 : AXIS_REF;
Master3 : AXIS_REF;
Master4 : AXIS_REF;
Slave : AXIS_REF;
END_VAR

AXIS_REF [} 101] AXIS_REF [} 101] AXIS_REF [} 101] AXIS_REF [} 101] AXIS_REF [} 101]

Master1 Axis data structure of the first master.
Master2 Axis data structure of the second master.
Master3 Axis data structure of the third master.
Master4 Axis data structure of the fourth master.
Slave Axis data structure of the Slave.

The axis data structure of type AXIS_REF [} 101] addresses an axis uniquely within the system. Among other
parameters it contains the current axis status, including position, velocity or error status.

Data types

TX1200 101Version: 1.3

8 Data types

8.1 Axis interface

8.1.1 Data type AXIS_REF
The AXIS_REF data type contains axis information. AXIS_REF is an interface between the PLC and the NC.
It is added to MC function blocks as axis reference.

TYPE AXIS_REF :
VAR_INPUT
PlcToNc AT %Q* : PLCTONC_AXIS_REF;
END_VAR
VAR_OUTPUT
NcToPlc AT %I* : NCTOPLC_AXIS_REF;
ADS : ST_AdsAddress;
Status : ST_AxisStatus;
END_VAR
END_TYPE

ST_AxisStatus [} 109] NCTOPLC_AXIS_REF [} 102] PLCTONC_AXIS_REF [} 102]

AXIS_REF elements

PlcToNc: PlcToNc [} 102] is a data structure that is cyclically exchanged between PLC and NC. Via this data
structure the MC function blocks communicate with the NC and send control information from the PLC to the
NC. This data structure is automatically placed in the output process image of the PLC and must be linked in
TwinCAT System Manager with the input process image of an NC axis.

NcToPlc: NcToPlc [} 102] is a data structure that is cyclically exchanged between PLC and NC. Via this data
structure the MC function blocks communicate with the NC and receive status information from the NC. This
data structure is automatically placed in the input process image of the PLC and must be linked in TwinCAT
System Manager with the output process image of an NC axis.

The NcToPlc [} 102] structure contains all main state data for an axis such as position, velocity and
instruction state. Since data exchange takes place cyclically, the PLC can access the current axis state at
any time without additional communication effort.

ADS: The ADS data structure contains the ADS communication parameters for an axis that are required for
direct ADS communication. Normally this structure does not have to be populated. The user can use it to
stored information for controlling an axis on another target system or via a special port number.

Status: The Status data structure [} 109] contains additional or processed status information for an axis. This
data structure is not refreshed cyclically, but has to be updated through the PLC program. The easiest way
to achieve this is by calling MC_ReadStatus [} 30] or, alternatively, by calling the action ReadStatus of
AXIS_REF:

Example:

VAR
Axis1 : AXIS_REF (* axis data structure for Axis-1 *)
END_VAR

(* program code at the beginning of each PLC cycle *)
Axis1.ReadStatus;

ReadStatus should be called once at the start of each PLC cycle. The current status information can then be
accessed in AXIS_REF from the whole PLC program. Within a cycle the status does not change.

Data types

TX1200102 Version: 1.3

8.1.2 Data type NCTOPLC_AXIS_REF
The data structure NCTOPLC_AXIS_REF is part of the AXIS_REF [} 101] data structure and is automatically
updated by the NC, so that updated information is available during each PLC cycle. NCTOPLC_AXIS_REF
is also referred to as axis interface between NC and PLC.

TYPE NCTOPLC_AXIS_REF
STRUCT
StateDWord : DWORD; (* Status double word *)
ErrorCode : DWORD; (* Axis error code *)
AxisState : DWORD; (* Axis moving status *)
AxisModeConfirmation : DWORD; (* Axis mode confirmation (feedback from NC) *)
HomingState : DWORD; (* State of axis calibration (homing) *)
CoupleState : DWORD; (* Axis coupling state *)
SvbEntries : DWORD; (* SVB entries/orders (SVB = Set preparation task) *)
SafEntries : DWORD; (* SAF entries/orders (SAF = Set execution task) *)
AxisId : DWORD; (* Axis ID *)
OpModeDWord : DWORD; (* Current operation mode *)
ActiveControlLoopIndex: WORD; (* Active control loop index *)
ControlLoopIndex : WORD; (* Axis control loop index (0, 1, 2, when multiple control loops are
used) *)
ActPos : LREAL; (* Actual position (absolut value from NC) *)
ModuloActPos : LREAL; (* Actual modulo position *)
ModuloActTurns : DINT; (* Actual modulo turns *)
ActVelo : LREAL; (* Actual velocity *)
PosDiff : LREAL; (* Position difference (lag distance) *)
SetPos : LREAL; (* Setpoint position *)
SetVelo : LREAL; (* Setpoint velocity *)
SetAcc : LREAL; (* Setpoint acceleration *)
TargetPos : LREAL; (* Estimated target position *)
ModuloSetPos : LREAL; (* Setpoint modulo position *)
ModuloSetTurns : DINT; (* Setpoint modulo turns *)
CmdNo : WORD; (* Continuous actual command number *)
CmdState : WORD; (* Command state *)
END_STRUCT
END_TYPE

Extended description of the TYPE NCTOPLC_AXLESTRUCT2 data structure

8.1.3 Data type PLCTONC_AXIS_REF
The data structure PLCTONC_AXIS_REF is part of the AXIS_REF [} 101] data structure and cyclically
transfers information to the NC. PLCTONC_AXIS_REF is also referred to as axis interface between PLC and
NC.

TYPE PLCTONC_AXIS_REF
STRUCT
ControlDWord : DWORD; (* Control double word *)
Override : DWORD; (* Velocity override *)
AxisModeRequest : DWORD; (* Axis operating mode (PLC request) *)
AxisModeDWord : DWORD; (* optional mode parameter *)
AxisModeLReal : LREAL; (* optional mode parameter *)
PositionCorrection : LREAL; (* Correction value for current position *)
ExtSetPos : LREAL; (* external position setpoint *)
ExtSetVelo : LREAL; (* external velocity setpoint *)
ExtSetAcc : LREAL; (* external acceleration setpoint *)
ExtSetDirection : DINT; (* external direction setpoint *)
Reserved1 : DWORD; (* reserved *)
ExtControllerOutput: LREAL; (* external controller output *)
GearRatio1 : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
GearRatio2 : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
GearRatio3 : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
GearRatio4 : LREAL; (* Gear ratio for dynamic multi master coupling modes *)
MapState : BYTE; (* reserved - internal use *)
Reserved_HIDDEN : ARRAY [105..127] OF BYTE;
END_STRUCT
END_TYPE

Extended description of the TYPE PLCTONC_AXLESTRUCT data structure

Data types

TX1200 103Version: 1.3

8.2 Motion function blocks

8.2.1 Data type MC_BufferMode
The data type MC_BufferMode is used with various function blocks from the motion control library.
BufferMode is used to specify how successive travel commands are to be processed.

TYPE MC_BufferMode :
(
MC_Aborting,
MC_Buffered,
MC_BlendingLow,
MC_BlendingPrevious,
MC_BlendingNext,
MC_BlendingHigh
);
END_TYPE

see also: BufferMode in the section on general rules for MC function blocks [} 14]

A second function block is required to use the buffer mode. It is not possible to trigger a move block
with new parameters while it is active.

Examples:

In the following example, a move command is used to move an axis from position P0 to P1 and then to P2.
The second command is issued during the movement to P1, but before the braking ramp with different buffer
modes. The reference point for the different velocity profiles is always P1. The mode specifies the velocity v1
or v2 at this point.

Data types

TX1200104 Version: 1.3

Since the speed of the first command is lower than the second, the modes BlendingLow/BlendingPrevious
and BlendingHigh/BlendingNext have the same result.

The difference in the next example is that the speed of the second command is lower than the first. Now, the
modes BlendingLow/BlendingNext and BlendingHigh/BlendingPrevious are equivalent.

Data types

TX1200 105Version: 1.3

The velocity profiles described here assume that the following command is issued in time, i.e. before the
braking ramp of the first command. Otherwise, blending is implemented as best as possible.

8.2.2 Data type MC_Direction
TYPE MC_Direction :
(
MC_Positive_Direction := 1,
MC_Shortest_Way ,
MC_Negative_Direction,
MC_Current_Direction
);
END_TYPE

This listing type contains the possible directions of travel for the function blocks MC_MoveVelocity [} 72] and
MC_MoveModulo [} 64].

Data types

TX1200106 Version: 1.3

8.2.3 Data type MC_HomingMode
The data type MC_HomingMode is used for parameterizing the function block MC_Home [} 88]

TYPE MC_HomingMode :
(
MC_DefaultHoming, (* default homing as defined in the SystemManager encoder parameters *)
MC_AbsSwitch, (* not implemented - Absolute Switch homing plus Limit switches *)
MC_LimitSwitch, (* not implemented - Homing against Limit switches *)
MC_RefPulse, (* not implemented - Homing using encoder Reference Pulse "Zero Mark" *)
MC_Direct, (* Static Homing forcing position from user reference *)
MC_Absolute, (* not implemented - Static Homing forcing position from absolute encoder *)
MC_Block, (* not implemented - Homing against hardware parts blocking movement *)
MC_ForceCalibration, (* set the calibration flag without perfomring any motion or changing the
position *)
MC_ResetCalibration (* resets the calibration flag without perfomring any motion or changing the
position *)
);
END_TYPE

8.2.4 Data type E_SuperpositionMode
TYPE E_SuperpositionMode :
(
SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION := 1,
SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION,
SUPERPOSITIONMODE_LENGTHREDUCTION_ADDITIVEMOTION,
SUPERPOSITIONMODE_LENGTHREDUCTION_LIMITEDMOTION,
SUPERPOSITIONMODE_ACCREDUCTION_ADDITIVEMOTION, (* from TwinCAT 2.11 *)
SUPERPOSITIONMODE_ACCREDUCTION_LIMITEDMOTION (* from TwinCAT 2.11 *)
);
END_TYPE

E_SuperpositionMode determines how a superimposed motion is carried out with the function block
MC_MoveSuperImposed [} 82].

The modes referred to as Veloreduction execute a superimposed movement with minimum velocity change,
preferentially over the full parameterized compensation section. Conversely, the modes referred to as
Lengthreduction use the maximum possible velocity and therefore reduce the required distance. In both
cases same distance is compensated.

In cases referred to as Additivemotion, the superimposed axis executes a longer or shorter movement than
indicated by Length, with the difference described by Distance. These modes are used, for example, if the
Length parameter refers to a reference axis and the superimposed axis may move by a longer or shorter
distance in comparison.

In cases referred to as Limitedmotion, the superposition is completed within the parameterized distance.
These modes are used, for example, if the Length parameter refers to the superimposed axis itself. With
these modes it should be noted that the superimposed Distance must be significantly shorter than the
available Length.

SUPERPOSITIONMODE_VELOREDUCTION_ADDITIVEMOTION:

The superimposed motion takes place over the whole Length. The specified maximum change in velocity
VelocityDiff is reduced in order to reach the required Distance over this length.

The Length is based on a reference axis without superimposed motion (e.g. master axis). The travel path of
the axis affected by this compensation is Length + Distance.

SUPERPOSITIONMODE_VELOREDUCTION_LIMITEDMOTION:

The superimposed motion takes place over the whole Length. The specified maximum change in velocity
VelocityDiff is reduced in order to reach the required Distance over this length.

The Length refers to the axis affected by the compensation. During compensation, the travel path of this axis
is Length.

SUPERPOSITIONMODE_LENGTHREDUCTION_ADDITIVEMOTION:

Data types

TX1200 107Version: 1.3

The distance of the superimposed motion is as short as possible and the speed is as high as possible.
Although neither the maximum velocity change VelocityDiff or the maximum Length are exceeded.

The Length is based on a reference axis without superimposed motion (e.g. master axis). The maximum
travel path of the axis affected by this compensation is Length + Distance.

SUPERPOSITIONMODE_LENGTHREDUCTION_LIMITEDMOTION:

The distance of the superimposed motion is as short as possible and the speed is as high as possible.
Although neither the maximum velocity change VelocityDiff or the maximum Length are exceeded.

The Length refers to the axis affected by the compensation. During compensation, the maximum travel path
of this axis is Length.

SUPERPOSITIONMODE_ACCREDUCTION_ADDITIVEMOTION (from TwinCAT 2.11)

The superimposed motion takes place over the whole Length. The specified maximum acceleration
(parameter Acceleration or Deceleration) is reduced as far as possible, in order to reach the specified
Distance on this path.

The Length is based on a reference axis without superimposed motion (e.g. master axis). The travel path of
the axis affected by this compensation is Length + Distance.

SUPERPOSITIONMODE_ACCREDUCTION_LIMITEDMOTION (from TwinCAT 2.11)

The superimposed motion takes place over the whole Length. The specified maximum acceleration
(parameter Acceleration or Deceleration) is reduced as far as possible, in order to reach the specified
Distance on this path.

The Length refers to the axis affected by the compensation. During compensation, the travel path of this axis
is Length.

8.2.5 Data typeST_SuperpositionOptions
TYPE ST_SuperpositionOptions :
STRUCT
AbortOption : E_SuperpositionAbortOption;
END_STRUCT
END_TYPE

TYPE E_SuperpositionAbortOption :
(
SUPERPOSITIONOPTION_ABORTATSTANDSTILL := 0,
SUPERPOSITIONOPTION_RESUMEAFTERSTANDSTILL,
SUPERPOSITIONOPTION_RESUMEAFTERMOTIONSTOP
);
END_TYPE

AbortOption

AbortOption is an optional parameter of the MC_MoveSuperimposed [} 82] block that specifies the behavior
of a superimposed movement in the case of a standstill of the main movement.

SUPERPOSITIONOPTION_ABORTATSTANDSTILL:

The superimposed movement is aborted as soon as the subordinate movement leads to a standstill of the
axis. The only exception to this is a standstill caused by a speed override of zero. In this case the
superimposed movement is also continued as soon as the override is not equal to zero. AbortAtStandstill is
the standard behavior if the option is not assigned by the user.

SUPERPOSITIONOPTION_RESUMEAFTERSTANDSTILL:

The superimposed movement is not aborted in the case of a temporary standstill of the main movement, but
is continued as soon as the axis moves again. This can occur in particular in the case of a reversal of
direction or with cam disc movements. The superimposed movement is terminated only if the target position
of the axis has been reached or the axis has been stopped.

SUPERPOSITIONOPTION_RESUMEAFTERMOTIONSTOP:

Data types

TX1200108 Version: 1.3

The superimposed movement is not aborted in the case of a standstill of the main movement, even if the
axis has reached its target position or has been stopped. In this case, the superimposed movement is
continued after the axis restarts.

This case is not of importance if the superimposed movement is applied to a slave axis, since this cannot be
started or stopped actively. In the case of slave axes, the modes of operation RESUMEAFTERSTANDSTILL
and RESUMEAFTERMOTIONSTOP are equivalent. The superimposed movement would thus also be
continued after a restart of the master axis.

Table 1: Overview of the abort conditions for a superimposed movement (MC_MoveSuperimposed)

ABORTATSTANDSTILL RESUMEAFTERSTAND-
STILL

RESUMEAFTERMO-
TIONSTOP

1. Override = 0% continued continued continued
2. Temporary standstill of
the main movement

Abort continued continued

3. Movement reversal Abort continued continued
4. Axis has reached the
target position or is
stopped

Abort Abort continued

5. Axis reset or switch-off
of the enable signal

Abort Abort Abort

6. In the case of slave
axes: Uncoupling

Abort Abort Abort

8.2.6 Data type E_JogMode
The data type E_JogMode is used in conjunction with the function block MC_Jog [} 91].

TYPE E_JogMode :
(
MC_JOGMODE_STANDARD_SLOW, (* motion with standard jog parameters for slow motion *)
MC_JOGMODE_STANDARD_FAST, (* motion with standard jog parameters for fast motion *)
MC_JOGMODE_CONTINOUS, (* axis moves as long as the jog button is pressed using parameterized
dynamics *)
MC_JOGMODE_INCHING, (* axis moves for a certain relative distance *)
MC_JOGMODE_INCHING_MODULO (* axis moves for a certain relative distance - stop position is rounded
to the distance value *)
);
END_TYPE

8.3 Status and parameter

8.3.1 Data type E_ReadMode
The data type E_ReadMode is used in conjunction with the function blocks MC_ReadBoolParameter [} 27]
and MC_ReadBoolParameter [} 26] to specify one-off or cyclic mode.

TYPE E_ReadMode :
(
READMODE_ONCE := 1,
READMODE_CYCLIC
);
END_TYPE

Data types

TX1200 109Version: 1.3

8.3.2 Data type ST_AxisStatus
The data type ST_AxisStatus contains comprehensive status information for an axis. The data structure
must be updated during each PLC cycle by calling MC_ReadStatus [} 30] or by calling the action
Axis.ReadStatus (AXIS_REF [} 101]).

TYPE ST_AxisStatus :
STRUCT
UpdateTaskIndex : BYTE; (* Task-Index of the task that updated this data set *)
UpdateCycleTime : LREAL; (* task cycle time of the task which calls the status function *)
CycleCounter : UDINT; (* PLC cycle counter when this data set updated *)
NcCycleCounter : UDINT; (* NC cycle counter incremented after NC task updated NcToPlc data
structures *)

MotionState : MC_AxisStates; (* motion state in the PLCopen state diagram *)

Error : BOOL; (* axis error state *)
ErrorId : UDINT; (* axis error code *)

(* PLCopen motion control statemachine states: *)
ErrorStop : BOOL;
Disabled : BOOL;
Stopping : BOOL;
StandStill : BOOL;
DiscreteMotion : BOOL;
ContinuousMotion : BOOL;
SynchronizedMotion : BOOL;
Homing : BOOL;

(* additional status - (PLCopen definition)*)
ConstantVelocity : BOOL;
Accelerating : BOOL;
Decelerating : BOOL;

(* Axis.NcToPlc.StateDWord *)
Operational : BOOL;
ControlLoopClosed : BOOL; (* operational and position control active *)
HasJob : BOOL;
HasBeenStopped : BOOL;
NewTargetPosition : BOOL; (* new target position commanded during move *)
InPositionArea : BOOL;
InTargetPosition : BOOL;
Protected : BOOL;
Homed : BOOL;
HomingBusy : BOOL;
MotionCommandsLocked : BOOL; (* stop 'n hold *)
SoftLimitMinExceeded : BOOL; (* reverse soft travel limit exceeded *)
SoftLimitMaxExceeded : BOOL; (* forward soft travel limit exceeded *)

Moving : BOOL;
PositiveDirection : BOOL;
NegativeDirection : BOOL;
NotMoving : BOOL;
Compensating : BOOL; (* superposition - overlayed motion *)

ExtSetPointGenEnabled : BOOL;
ExternalLatchValid : BOOL;
CamDataQueued : BOOL;
CamTableQueued : BOOL;
CamScalingPending : BOOL;
CmdBuffered : BOOL;
PTPmode : BOOL;
DriveDeviceError : BOOL;
IoDataInvalid : BOOL;

(* Axis.NcToPlc.CoupleState *)
Coupled : BOOL;

(* axis operation mode feedback from NcToPlc *)
OpMode : ST_AxisOpModes;
END_STRUCT
END_TYPE

ST_AxisOpModes [} 113] MC_AxisStates [} 113]

Data types

TX1200110 Version: 1.3

8.3.3 Data type MC_AxisParameter
The MC_AxisParameter data type is used in conjunction with function blocks for reading and writing of axis
parameters.

TYPE MC_AxisParameter : (
(* PLCopen specific parameters *) (* Index-Group 0x4000 + ID*)
CommandedPosition := 1, (* lreal *) (* taken from NcToPlc *)
SWLimitPos, (* lreal *) (* IndexOffset= 16#0001_000E *)
SWLimitNeg, (* lreal *) (* IndexOffset= 16#0001_000D *)
EnableLimitPos, (* bool *) (* IndexOffset= 16#0001_000C *)
EnableLimitNeg, (* bool *) (* IndexOffset= 16#0001_000B *)
EnablePosLagMonitoring, (* bool *) (* IndexOffset= 16#0002_0010 *)
MaxPositionLag, (* lreal *) (* IndexOffset= 16#0002_0012 *)
MaxVelocitySystem, (* lreal *) (* IndexOffset= 16#0000_0027 *)
MaxVelocityAppl, (* lreal *) (* IndexOffset= 16#0000_0027 *)
ActualVelocity, (* lreal *) (* taken from NcToPlc *)
CommandedVelocity, (* lreal *) (* taken from NcToPlc *)
MaxAccelerationSystem, (* lreal *) (* IndexOffset= 16#0000_0101 *)
MaxAccelerationAppl, (* lreal *) (* IndexOffset= 16#0000_0101 *)
MaxDecelerationSystem, (* lreal *) (* IndexOffset= 16#0000_0102 *)
MaxDecelerationAppl, (* lreal *) (* IndexOffset= 16#0000_0102 *)
MaxJerkSystem, (* lreal *) (* IndexOffset= 16#0000_0103 *)
MaxJerkAppl, (* lreal *) (* IndexOffset= 16#0000_0103 *)

(* Beckhoff specific parameters *) (* Index-Group 0x4000 + ID*)
AxisId := 1000, (* lreal *) (* IndexOffset= 16#0000_0001 *)
AxisVeloManSlow, (* lreal *) (* IndexOffset= 16#0000_0008 *)
AxisVeloManFast, (* lreal *) (* IndexOffset= 16#0000_0009 *)
AxisVeloMax, (* lreal *) (* IndexOffset= 16#0000_0027 *)
AxisAcc, (* lreal *) (* IndexOffset= 16#0000_0101 *)
AxisDec, (* lreal *) (* IndexOffset= 16#0000_0102 *)
AxisJerk, (* lreal *) (* IndexOffset= 16#0000_0103 *)
MaxJerk, (* lreal *) (* IndexOffset= 16#0000_0103 *)
AxisMaxVelocity, (* lreal *) (* IndexOffset= 16#0000_0027 *)
AxisRapidTraverseVelocity, (* lreal *) (* IndexOffset= 16#0000_000A *)
AxisManualVelocityFast, (* lreal *) (* IndexOffset= 16#0000_0009 *)
AxisManualVelocitySlow, (* lreal *) (* IndexOffset= 16#0000_0008 *)
AxisCalibrationVelocityForward, (* lreal *) (* IndexOffset= 16#0000_0006 *)
AxisCalibrationVelocityBackward, (* lreal *) (* IndexOffset= 16#0000_0007 *)
AxisJogIncrementForward, (* lreal *) (* IndexOffset= 16#0000_0018 *)
AxisJogIncrementBackward, (* lreal *) (* IndexOffset= 16#0000_0019 *)
AxisEnMinSoftPosLimit, (* bool *) (* IndexOffset= 16#0001_000B *)
AxisMinSoftPosLimit, (* lreal *) (* IndexOffset= 16#0001_000D *)
AxisEnMaxSoftPosLimit, (* bool *) (* IndexOffset= 16#0001_000C *)
AxisMaxSoftPosLimit, (* lreal *) (* IndexOffset= 16#0001_000E *)
AxisEnPositionLagMonitoring, (* bool *) (* IndexOffset= 16#0002_0010 *)
AxisMaxPosLagValue, (* lreal *) (* IndexOffset= 16#0002_0012 *)
AxisMaxPosLagFilterTime, (* lreal *) (* IndexOffset= 16#0002_0013 *)
AxisEnPositionRangeMonitoring, (* bool *) (* IndexOffset= 16#0000_000F *)
AxisPositionRangeWindow, (* lreal *) (* IndexOffset= 16#0000_0010 *)
AxisEnTargetPositionMonitoring, (* bool *) (* IndexOffset= 16#0000_0015 *)
AxisTargetPositionWindow, (* lreal *) (* IndexOffset= 16#0000_0016 *)
AxisTargetPositionMonitoringTime, (* lreal *) (* IndexOffset= 16#0000_0017 *)
AxisEnInTargetTimeout, (* bool *) (* IndexOffset= 16#0000_0029 *)
AxisInTargetTimeout, (* lreal *) (* IndexOffset= 16#0000_002A *)
AxisEnMotionMonitoring, (* bool *) (* IndexOffset= 16#0000_0011 *)
AxisMotionMonitoringWindow, (* lreal *) (* IndexOffset= 16#0000_0028 *)
AxisMotionMonitoringTime, (* lreal *) (* IndexOffset= 16#0000_0012 *)
AxisDelayTimeVeloPosition, (* lreal *) (* IndexOffset= 16#0000_0104 *)
AxisEnLoopingDistance, (* bool *) (* IndexOffset= 16#0000_0013 *)
AxisLoopingDistance, (* lreal *) (* IndexOffset= 16#0000_0014 *)
AxisEnBacklashCompensation, (* bool *) (* IndexOffset= 16#0000_002B *)
AxisBacklash, (* lreal *) (* IndexOffset= 16#0000_002C *)
AxisEnDataPersistence, (* bool *) (* IndexOffset= 16#0000_0030 *)
AxisRefVeloOnRefOutput, (* lreal *) (* IndexOffset= 16#0003_0101 *)
AxisOverrideType, (* lreal *) (* IndexOffset= 16#0000_0105 *)
(* new since 4/2007 *)
AxisEncoderScalingFactor, (* lreal *) (* IndexOffset= 16#0001_0006 *)
AxisEncoderOffset, (* lreal *) (* IndexOffset= 16#0001_0007 *)
AxisEncoderDirectionInverse, (* bool *) (* IndexOffset= 16#0001_0008 *)
AxisEncoderMask, (* dword *) (* IndexOffset= 16#0001_0015 *)
AxisEncoderModuloValue, (* lreal *) (* IndexOffset= 16#0001_0009 *)
AxisModuloToleranceWindow, (* lreal *) (* IndexOffset= 16#0001_001B *)
AxisEnablePosCorrection, (* bool *) (* IndexOffset= 16#0001_0016 *)
AxisPosCorrectionFilterTime, (* lreal *) (* IndexOffset= 16#0001_0017 *)
(* new since 1/2010 *)
AxisUnitInterpretation, (* lreal *) (* IndexOffset= 16#0000_0026 *)

Data types

TX1200 111Version: 1.3

AxisMotorDirectionInverse, (* bool *) (* IndexOffset= 16#0003_0006 *)
(* new since 1/2011 *)
AxisCycleTime, (* lreal *) (* IndexOffset= 16#0000_0004 *)
(* new since 5/2011 *)
AxisFastStopSignalType, (* dword *) (* IndexOffset= 16#0000_001E *)
AxisFastAcc, (* lreal *) (* IndexOffset= 16#0000_010A *)
AxisFastDec, (* lreal *) (* IndexOffset= 16#0000_010B *)
AxisFastJerk, (* lreal *) (* IndexOffset= 16#0000_010C *)

(* Beckhoff specific axis status information - READ ONLY *) (* Index-Group 0x4100 + ID*)
AxisTargetPosition := 2000, (* lreal *) (* IndexOffset= 16#0000_0013 *)
AxisRemainingTimeToGo, (* lreal *) (* IndexOffset= 16#0000_0014 *)
AxisRemainingDistanceToGo, (* lreal *) (* IndexOffset= 16#0000_0022, 16#0000_0042 *)

(* Beckhoff specific axis functions *)
(* read/write gear ratio of a slave *)
AxisGearRatio := 3000, (* lreal *) (* read: IndexGroup=0x4100+ID, IdxOffset=16#0000_0022,
*)
(* write:IndexGroup=0x4200+ID, IdxOffset=16#0000_0042 *)

(* Beckhoff specific other parameters *)
(* new since 1/2011 *)
NcSafCycleTime := 4000, (* lreal *) (* IndexOffset= 16#0000_0010 *)
NcSvbCycleTime (* lreal *) (* IndexOffset= 16#0000_0012 *)
);
END_TYPE

The AxisGearRatio parameter can only be read or written if the axis is coupled as a slave. During
the motion only very small changes are allowed.

8.3.4 Data type ST_PowerStepperStruct
TYPE ST_PowerStepperStruct :
STRUCT
DestallDetectMode : E_DestallDetectMode;
DestallMode : E_DestallMode;
DestallEnable : BOOL;
StatusMonEnable : BOOL;
Retries : INT;
Timeout : TIME;
END_STRUCT
END_TYPE

8.3.5 Data type ST_DriveAddress
The data type ST_DriveAddress contains the ADS access data for a drive unit. The data are read with
MC_ReadDriveAddress [} 55].

TYPE ST_DriveAddress :
STRUCT
NetID : T_AmsNetId; (* AMS NetID of the drive as a string *)
NetIdBytes : T_AmsNetIdArr; (* AMS NetID of the drive as a byte array (same information as NetID)
*)
SlaveAddress : T_AmsPort; (* slave address of the drive connected to a bus master *)
Channel : BYTE; (* EtherCAT channel number of the drive (0, 1, 2, 3, 4…) *)
END_STRUCT
END_TYPE

8.3.6 Data type ST_AxisParameterSet
The data type ST_AxisParameterSet contains the whole parameter dataset of an axis that can be read with
the function block MC_ReadParameterSet [} 29].

Individual parameters that can be changed at runtime can be written with MC_WriteParameter [} 33]. It is not
possible to write back the parameter dataset.

Data types

TX1200112 Version: 1.3

The individual parameters are described in the NC ADS documentation.
TYPE ST_AxisParameterSet :
STRUCT
(* AXIS: *)
AxisId : DWORD; (* 0x00000001 *)
sAxisName : STRING(31); (* 0x00000002 *)
nAxisType : DWORD; (* 0x00000003 *)
bEnablePositionAreaControl : WORD; (* 0x0000000F *)
fPositionAreaControlRange : LREAL; (* 0x00000010 *)
bEnableMotionControl : WORD; (* 0x00000011 *)
fMotionControlTime : LREAL; (* 0x00000012 *)
bEnableLoop : WORD; (* 0x00000013 *)
fLoopDistance : LREAL; (* 0x00000014 *)
bEnableTargetPosControl : WORD; (* 0x00000015 *)
fTargetPosControlRange : LREAL; (* 0x00000016 *)
fTargetPosControlTime : LREAL; (* 0x00000017 *)
fVeloMaximum : LREAL; (* 0x00000027 *)
fMotionControlRange : LREAL; (* 0x00000028 *)
bEnablePEHTimeControl : WORD; (* 0x00000029 *)
fPEHControlTime : LREAL; (* 0x0000002A *)
bEnableBacklashCompensation : WORD; (* 0x0000002B *)
fBacklash : LREAL; (* 0x0000002C *)
sAmsNetId : T_AmsNetId; (* 0x00000031 *)
nPort : WORD; (* 0x00000031 *)
nChnNo : WORD; (* 0x00000031 *)
fAcceleration : LREAL; (* 0x00000101 *)
fDeceleration : LREAL; (* 0x00000102 *)
fJerk : LREAL; (* 0x00000103 *)

(* ENCODER: *)
nEncId : DWORD; (* 0x00010001 *)
sEncName : STRING(31); (* 0x00010002 *)
nEncType : DWORD; (* 0x00010003 *)
fEncScaleFactor : LREAL; (* 0x00010006 *)
fEncOffset : LREAL; (* 0x00010007 *)
bEncIsInverse : WORD; (* 0x00010008 *)
fEncModuloFactor : LREAL; (* 0x00010009 *)
nEncMode : DWORD; (* 0x0001000A *)
bEncEnableSoftEndMinControl : WORD; (* 0x0001000B *)
bEncEnableSoftEndMaxControl : WORD; (* 0x0001000C *)
fEncSoftEndMin : LREAL; (* 0x0001000D *)
fEncSoftEndMax : LREAL; (* 0x0001000E *)
nEncMaxIncrement : DWORD; (* 0x00010015 *)
bEncEnablePosCorrection : WORD; (* 0x00010016 *)
fEncPosCorrectionFilterTime : LREAL; (* 0x00010017 *)

(* CONTROLLER: *)
nCtrlId : DWORD; (* 0x00020001 *)
sCtrlName : STRING(31); (* 0x00020002 *)
nCtrlType : DWORD; (* 0x00020003 *)
bCtrlEnablePosDiffControl : WORD; (* 0x00020010 *)
bCtrlEnableVeloDiffControl : WORD; (* 0x00020011 *)
fCtrlPosDiffMax : LREAL; (* 0x00020012 *)
fCtrlPosDiffMaxTime : LREAL; (* 0x00020013 *)
fCtrlPosKp : LREAL; (* 0x00020102 *)
fCtrlPosTn : LREAL; (* 0x00020103 *)
fCtrlPosTv : LREAL; (* 0x00020104 *)
fCtrlPosTd : LREAL; (* 0x00020105 *)
fCtrlPosExtKp : LREAL; (* 0x00020106 *)
fCtrlPosExtVelo : LREAL; (* 0x00020107 *)
fCtrlAccKa : LREAL; (* 0x00020108 *)

(* DRIVE: *)
nDriveId : DWORD; (* 0x00030001 *)
sDriveName : STRING(31); (* 0x00030002 *)
nDriveType : DWORD; (* 0x00030003 *)
bDriveIsInverse : WORD; (* 0x00030006 *)
fDriveVeloReferenz : LREAL; (* 0x00030101 *)
fDriveOutputReferenz : LREAL; (* 0x00030102 *)

(* miscellaneous *)
fAxisCycleTime : LREAL; (* 0x00000004 *) (* available from Tc 2.11 R2 *)

(* 17.05.11: parameter extension *)
fRefVeloSearch : LREAL; (* 0x00000006 calibration velo (TO plc cam) *)
fRefVeloSync : LREAL; (* 0x00000007 calibration velo (off plc cam) *)
fVeloSlowManual : LREAL; (* 0x00000008 manual velocity (slow) *)
fVeloFastManual : LREAL; (* 0x00000009 manual velocity (fast) *)

https://infosys.beckhoff.com/content/1033/tcadscommon/1255079179.html

Data types

TX1200 113Version: 1.3

(* ENCODER (incremental): *)
bEncRefSearchInverse : UINT; (* 0x00010101 *)
bEncRefSyncInverse : UINT; (* 0x00010102 *)
nEncRefMode : UDINT; (* 0x00010107 *)
fEncRefPosition : LREAL; (* 0x00010103 *)

(* fill up *)
arrReserved : ARRAY[511..512] OF BYTE; (* fill up to 512 bytes *)
END_STRUCT
END_TYPE

8.3.7 Data type ST_AxisOpModes
The data type ST_AxisOpModes contains information about the operating mode parameterization of an axis.

TYPE ST_AxisOpModes :
STRUCT
PositionAreaMonitoring : BOOL; (* bit 0 - OpModeDWord *)
TargetPositionMonitoring: BOOL; (* bit 1 - OpModeDWord *)
LoopMode : BOOL; (* bit 2 - OpModeDWord - loop mode for two speed axes *)
MotionMonitoring : BOOL; (* bit 3 - OpModeDWord *)
PEHTimeMonitoring : BOOL; (* bit 4 - OpModeDWord *)
BacklashCompensation : BOOL; (* bit 5 - OpModeDWord *)
Modulo : BOOL; (* bit 7 - OpModeDWord - axis is parameterized as modulo axis *)
PositionLagMonitoring : BOOL; (* bit 16 - OpModeDWord *)
VelocityLagMonitoring : BOOL; (* bit 17 - OpModeDWord *)
SoftLimitMinMonitoring : BOOL; (* bit 18 - OpModeDWord *)
SoftLimitMaxMonitoring : BOOL; (* bit 19 - OpModeDWord *)
PositionCorrection : BOOL; (* bit 20 - OpModeDWord *)
END_STRUCT
END_TYPE

8.3.8 Data type E_AxisPositionCorrectionMode
TYPE E_PositionCorrectionMode:
(
POSITIONCORRECTION_MODE_UNLIMITED, (* no limitation - pass correction immediately *)
POSITIONCORRECTION_MODE_FAST, (* limitatation to maximum position change per cycle *)
POSITIONCORRECTION_MODE_FULLLENGTH (* limitation uses full length to adapt to correction in small
steps *)
);
END_TYPE

POSITIONCORRECTION_MODE_UNLIMITED No filtering, the correction is executed immediately.
Note that large changes in the correction value can
lead to high accelerations.

POSITIONCORRECTION_MODE_FAST The position correction is limited to the extent that a
maximum acceleration is not exceeded. However, the
correction is completely executed as fast as possible.

POSITIONCORRECTION_MODE_FULLLENGTH The position correction is accomplished distributed
over a distance of the axis (CorrectionLength). This
results in smaller changes per time unit.

8.3.9 Data type MC_AxisStates
The data type MC_AxisStates describes the operating states according to the PlcOpen state diagram [} 11].

TYPE MC_AxisStates :
(
MC_AXISSTATE_UNDEFINED,
MC_AXISSTATE_DISABLED,
MC_AXISSTATE_STANDSTILL,
MC_AXISSTATE_ERRORSTOP,
MC_AXISSTATE_STOPPING,
MC_AXISSTATE_HOMING,
MC_AXISSTATE_DISCRETEMOTION,
MC_AXISSTATE_CONTINOUSMOTION,
MC_AXISSTATE_SYNCHRONIZEDMOTION

Data types

TX1200114 Version: 1.3

);
END_TYPE

See also: General rules for MC function blocks [} 14]

8.4 Touch probe

8.4.1 Data type TRIGGER_REF
TYPE TRIGGER_REF :
STRUCT
EncoderID : UDINT; (* 1..255 *)
TouchProbe : E_TouchProbe; (* probe unit definition *)
SignalSource : E_SignalSource; (* optional physical signal source used by the probe unit
 - available from TwinCAT 2.11 Build 2022 with
MC_TouchProbe_V2 *)
Edge : E_SignalEdge; (* rising or falling signal edge *)
Mode : E_TouchProbeMode; (* single shot or continuous monitoring
 - available from TwinCAT 2.11 Build 2022 with
MC_TouchProbe_V2 *)
PlcEvent : BOOL; (* PLC trigger signal input when TouchProbe signal source is
set to 'PlcEvent' *)
ModuloPositions : BOOL; (* interpretation of FirstPosition, LastPosition and
RecordedPosition as modulo positions when TRUE *)
END_STRUCT
END_TYPE

EncoderID: The ID of an encoder is indicated in the TwinCAT System Manager.

TouchProbe : Defines the latch unit (probe unit) within the encoder hardware used.

TYPE E_TouchProbe :
(
TouchProbe1 := 1, (* 1st hardware probe unit with Sercos, CanOpen, KL5xxx and others *)
TouchProbe2, (* 2nd probe unit - available from MC_TouchProbe_V2_00 *)
TouchProbe3, (* currently not available *)
TouchProbe4, (* currently not available *)
PlcEvent := 10 (* simple PLC signal TRUE/FALSE *)
);
END_TYPE

SignalSource: Optionally defines the signal source, if it can be selected via the controller. In many cases the
signal source is permanently configured in the drive and should then be set to the default value
SignalSource_Default. (setting possibility only available from MC_TouchProbe_V2 [} 37])

TYPE E_SignalSource :
(
SignalSource_Default, (* undefined or externally configured *)
SignalSource_Input1, (* digital drive input 1 *)
SignalSource_Input2, (* digital drive input 2 *)
SignalSource_Input3, (* digital drive input 3 *)
SignalSource_Input4, (* digital drive input 4 *)
SignalSource_ZeroPulse := 128, (* encoder zero pulse *)
SignalSource_DriveDefined (* defined by drive parameters - e. g. CAN object 0x60D0 *)
);
END_TYPE

Edge : Defines whether the rising or falling edge of the trigger signal is evaluated.

TYPE E_SignalEdge :
(
RisingEdge,
FallingEdge
);
END_TYPE

Data types

TX1200 115Version: 1.3

Mode: Specifies the operating mode of the latch unit. In single mode only the first edge is sampled. In
continuous mode each PLC cycle edge is signaled. (Mode only available with MC_TouchProbe_V2 [} 37])

TYPE E_TouchProbeMode :
(
TOUCHPROBEMODE_SINGLE_COMPATIBILITYMODE, (* for TwinCAT 2.10 and 2.11 before Build 2022 - for use
with MC_TouchProbe as well *)
TOUCHPROBEMODE_SINGLE, (* multi probe interface - from 2.11 Build 2022 *)
TOUCHPROBEMODE_CONTINOUS (* multi probe interface - from 2.11 Build 2022 *)
);
END_TYPE

PlcEvent : If the signal source TouchProbe is set to the type PlcEvent, a rising edge on these variables
triggers the recording of the current axis position. The PlcEvent is not a true latch function, but is cycle-time
dependent.

ModuloPositions: If the variable ModuloPositions is FALSE, the axis position is interpreted in an absolute
linear range from -∞ to +∞. The positions FirstPosition, LastPosition und RecordedPosition of the
MC_TouchProbe [} 34] or MC_TouchProbe_V2 [} 37] function block are then also absolute.
If ModuloPositions is TRUE, all positions are interpreted as modulo values in the modulo range of the axis
used (e.g. 0..359.9999). At the same time this means that a defined trigger window repeats itself cyclically.

8.4.2 Data type MC_TouchProbeRecordedData
TYPE MC_TouchProbeRecordedData :
STRUCT
 Counter : LREAL;
 RecordedPosition : LREAL;
 AbsolutePosition : LREAL;
 ModuloPosition : LREAL;
END_STRUCT
END_TYPE

Counter: counter indicating how many valid edges were detected in the last cycle. Detection of multiple
edges is only implemented in mode TOUCHPROBEMODE_CONTINUOUS under SERCOS / SOE and must
be supported explicitly by the hardware (e.g. AX5000).

RecordedPosition: one or more detected axis positions at the time of the trigger signal. This corresponds to
the absolute axis position or the modulo axis position, depending on the parameterization.

AbsolutePosition: absolute axis position detected at the time of the trigger signal.

ModuloPosition: modulo axis position recorded at the time of the trigger signal.

8.5 External set value generator

8.5.1 Datentyp E_PositionType
TYPE E_PositionType :
(
POSITIONTYPE_ABSOLUTE := 1, (* Absolute position *)
POSITIONTYPE_RELATIVE, (* Relative position *)
POSITIONTYPE_MODULO := 5 (* Modulo position *)
);
END_TYPE

Example programs

TX1200116 Version: 1.3

9 Example programs

9.1 Sample Programs
PTP – point to point movement

The example program manages and moves an axis in PTP mode. The axis is moved with two instances of
an MC_MoveAbsolute function block in queued mode over several intermediate positions and velocity levels.

The example program requires the TcMC2.lib library and operates fully in simulation mode. Progress can be
monitored in TwinCAT Scope View with the configuration provided.

Click here to save the example program:

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458496267/.zip

Master-Slave coupling

The example program couples two axes and moves them together. The slave axis is uncoupled and
positioned during the journey.

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458499211/.zip

Dancer control

The dancer control example program shows how the speed of a slave axis can be controlled using the
position of a dancer.

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458502155/.zip

Superimposed movement (Superposition)

The example shows the overlay of a movement while an axis is driving.

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458505099/.zip

https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458496267.zip
https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458499211.zip
https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458502155.zip
https://infosys.beckhoff.com/content/1033/tcplclibmc2/Resources/458505099.zip

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tx1200

mailto:info@beckhoff.de?subject=TX1200
https://www.beckhoff.com
https://www.beckhoff.com/tx1200

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 For your safety
	1.3 Notes on information security

	2 Overview
	3 State diagram
	4 General rules for MC function blocks
	5 Migration from TcMC to TcMC2
	6 Organisation function blocks
	6.1 Axis functions
	6.1.1 MC_Power
	6.1.2 MC_Reset
	6.1.3 MC_SetPosition

	6.2 Status and parameter
	6.2.1 MC_ReadActualVelocity
	6.2.2 MC_ReadActualPosition
	6.2.3 MC_ReadAxisComponents
	6.2.4 MC_ReadAxisError
	6.2.5 MC_ReadBoolParameter
	6.2.6 MC_ReadParameter
	6.2.7 MC_ReadParameterSet
	6.2.8 MC_ReadStatus
	6.2.9 MC_WriteBoolParameter
	6.2.10 MC_WriteParameter

	6.3 Touch probe
	6.3.1 MC_TouchProbe
	6.3.2 MC_TouchProbe_V2
	6.3.3 MC_AbortTrigger
	6.3.4 MC_AbortTrigger_V2

	6.4 External set value generator
	6.4.1 MC_ExtSetPointGenEnable
	6.4.2 MC_ExtSetPointGenDisable
	6.4.3 MC_ExtSetPointGenFeed

	6.5 Special extensions
	6.5.1 MC_PowerStepper
	6.5.2 Notes on the MC_PowerStepper
	6.5.3 MC_OverrideFilter
	6.5.4 MC_SetOverride
	6.5.5 MC_SetEncoderScalingFactor
	6.5.6 MC_PositionCorrectionLimiter
	6.5.7 MC_ReadDriveAddress
	6.5.8 MC_SetAcceptBlockedDriveSignal

	7 Motion function blocks
	7.1 Point to point motion
	7.1.1 MC_MoveAbsolute
	7.1.2 MC_MoveRelative
	7.1.3 MC_MoveAdditive
	7.1.4 MC_MoveModulo
	7.1.5 Notes on modulo positioning
	7.1.6 MC_MoveVelocity
	7.1.7 MC_MoveContinuousAbsolute
	7.1.8 MC_MoveContinuousRelative
	7.1.9 MC_Halt
	7.1.10 MC_Stop

	7.2 Superposition
	7.2.1 MC_MoveSuperimposed
	7.2.2 Application examples for MC_MoveSuperimposed
	7.2.3 MC_AbortSuperposition

	7.3 Homing
	7.3.1 MC_Home

	7.4 Manual motion
	7.4.1 MC_Jog

	7.5 Axis coupling
	7.5.1 MC_GearIn
	7.5.2 MC_GearInDyn
	7.5.3 MC_GearOut
	7.5.4 MC_GearInMultiMaster

	8 Data types
	8.1 Axis interface
	8.1.1 Data type AXIS_REF
	8.1.2 Data type NCTOPLC_AXIS_REF
	8.1.3 Data type PLCTONC_AXIS_REF

	8.2 Motion function blocks
	8.2.1 Data type MC_BufferMode
	8.2.2 Data type MC_Direction
	8.2.3 Data type MC_HomingMode
	8.2.4 Data type E_SuperpositionMode
	8.2.5 Data typeST_SuperpositionOptions
	8.2.6 Data type E_JogMode

	8.3 Status and parameter
	8.3.1 Data type E_ReadMode
	8.3.2 Data type ST_AxisStatus
	8.3.3 Data type MC_AxisParameter
	8.3.4 Data type ST_PowerStepperStruct
	8.3.5 Data type ST_DriveAddress
	8.3.6 Data type ST_AxisParameterSet
	8.3.7 Data type ST_AxisOpModes
	8.3.8 Data type E_AxisPositionCorrectionMode
	8.3.9 Data type MC_AxisStates

	8.4 Touch probe
	8.4.1 Data type TRIGGER_REF
	8.4.2 Data type MC_TouchProbeRecordedData

	8.5 External set value generator
	8.5.1 Datentyp E_PositionType

	9 Example programs
	9.1 Sample Programs

		documentation@beckhoff.com
	2023-07-20T09:09:05+0200
	Beckhoff Automation, Verl
	Documentation Publishing

