
Manual | EN

TF8010
TwinCAT 3 | Building Automation Basic

2022-07-04 | Version: 1.1

Table of contents

TF8010 3Version: 1.1

Table of contents
1 Foreword.. 5

1.1 Notes on the documentation ... 5
1.2 Safety instructions... 6
1.3 Notes on information security.. 7

2 Introduction ... 8

3 Integration in TwinCAT... 9
3.1 System requirements .. 9
3.2 Installation ... 9
3.3 Licensing ... 12

4 Programming... 15
4.1 POUs... 15

4.1.1 Conversion functions.. 15
4.1.2 Energy management.. 16
4.1.3 Facade ... 20
4.1.4 Filter functions.. 28
4.1.5 Lighting... 33
4.1.6 Scene management ... 58
4.1.7 Signal processing... 68
4.1.8 Timer functions... 72
4.1.9 Error Codes.. 93

4.2 DUTs ... 93
4.2.1 Enumerations ... 93
4.2.2 Structures... 94

4.3 GVLs ... 96
4.3.1 Constants ... 96

5 Appendix.. 97
5.1 Support and Service.. 97

Table of contents

TF80104 Version: 1.1

Foreword

TF8010 5Version: 1.1

1 Foreword

1.1 Notes on the documentation
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.
Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:
EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702
with corresponding applications or registrations in various other countries.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.
The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.
Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

Foreword

TF80106 Version: 1.1

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

 DANGER
Serious risk of injury!
Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

 WARNING
Risk of injury!
Failure to follow the safety instructions associated with this symbol endangers the life and health of per-
sons.

 CAUTION
Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE
Damage to the environment or devices
Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

Tip or pointer
This symbol indicates information that contributes to better understanding.

Foreword

TF8010 7Version: 1.1

1.3 Notes on information security
The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our
https://www.beckhoff.com/secguide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Introduction

TF80108 Version: 1.1

2 Introduction
The library offers users basic functions for room automation and building control.

The user of this library requires basic knowledge of the following:

• TwinCAT XAE
• Design and characteristics of Beckhoff IPCs and their Bus Terminal system
• Relevant safety regulations for building technical equipment

This software library is intended for building automation system partners of Beckhoff Automation GmbH &
Co. KG. The system partners operate in the field of building automation and are concerned with the
installation, commissioning, expansion, maintenance and service of measurement, control and regulating
systems for the technical equipment of buildings.

The Tc3 Building Automation Basic library can be used on all hardware platforms that support TwinCAT 3.1
or higher.

Integration in TwinCAT

TF8010 9Version: 1.1

3 Integration in TwinCAT

3.1 System requirements
Technical data Requirement
Operating system Windows 7/10, Windows Embedded Standard 7,

Windows CE 7
Target platform PC architecture (x86, x64 or ARM)
TwinCAT version TwinCAT 3.1 build 4020.32 or higher
Required TwinCAT setup level TwinCAT 3 XAE, XAR
Required TwinCAT license TF8010_TC3 Building Automation Basic

3.2 Installation
The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

ü The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.
1. Run the setup file as administrator. To do this, select the command Run as administrator in the context

menu of the file.
ð The installation dialog opens.

2. Accept the end user licensing agreement and click Next.

Integration in TwinCAT

TF801010 Version: 1.1

3. Enter your user data.

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If
you want to install the TwinCAT 3 Function components separately, select Custom.

Integration in TwinCAT

TF8010 11Version: 1.1

5. Select Next, then Install to start the installation.

ð A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.
6. Confirm the dialog with Yes.

Integration in TwinCAT

TF801012 Version: 1.1

7. Select Finish to exit the setup.

ð The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [} 12]).

3.3 Licensing
The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).

Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.
3. If you want to activate the license for a remote device, set the desired target system. To do this, select

the target system from the Choose Target System drop-down list in the toolbar.
ð The licensing settings always refer to the selected target system. When the project is activated on

the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

https://infosys.beckhoff.de/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207

Integration in TwinCAT

TF8010 13Version: 1.1

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

ð The TwinCAT 3 license manager opens.
5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you

want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

6. Open the Order Information (Runtime) tab.
ð In the tabular overview of licenses, the previously selected license is displayed with the status

“missing”.

Integration in TwinCAT

TF801014 Version: 1.1

7. Click 7-Day Trial License... to activate the 7-day trial license.

ð A dialog box opens, prompting you to enter the security code displayed in the dialog.

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

ð In the tabular overview of licenses, the license status now indicates the expiry date of the license.
10. Restart the TwinCAT system.
ð The 7-day trial version is enabled.

Programming

TF8010 15Version: 1.1

4 Programming
The TwinCAT PLC Building Automation library contains useful function blocks for building automation.

4.1 POUs

4.1.1 Conversion functions

4.1.1.1 F_Scale

A raw analog value is scaled to the specified measuring range and returned as the function value. If the raw
value extends beyond the upper or lower measuring range, the corresponding limit value is output. There
must be a difference of at least 0.01 between the upper and lower limit values for the raw data. If this is not
the case, the lower limit value is output.

FUNCTION F_Scale: LREAL

VAR_INPUT
fRawData : LREAL;
fRawDataLowerOffLimit : LREAL;
fRawDataUpperOffLimit : LREAL;
fScaleDataLowerOffLimit : LREAL;
fScaleDataUpperOffLimit : LREAL;

fRawData: raw value.

fRawDataLowerOffLimit: Lower limit for raw value.

fRawDataUpperOffLimit: Upper limit for raw value.

fScaleDataLowerOffLimit: Lower limit of scaled measured value.

fScaleDataUpperOffLimit: Upper limit of scaled measured value.

Programming

TF801016 Version: 1.1

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.1.2 Temperature conversion functions

between Kelvin, Celsius, Reaumur and Fahrenheit.

F_TO_C
F_TO_K
F_TO_R

K_TO_F
K_TO_C
K_TO_R

C_TO_F
C_TO_K
C_TO_R

R_TO_K
R_TO_C
R_TO_F

Overview

Kelvin (K) Degrees Celsius
(°C)

Reaumur (°R) Fahrenheit (°F)

Absolute zero 0 -273.15 -218.52 -459.67
Melting point 273.15 0 0 32
Boiling point 373.15 100 80 212

(The melting and boiling points refer to pure water.)

Conversion rules

Kelvin (K) Degrees Celsius
(°C)

Reaumur (°R) Fahrenheit (°F)

x = Kelvin (K) -

x = degrees
Celsius (°C)

-

x = Reaumur (°R) -

x = Fahrenheit (°F) -

4.1.2 Energy management

4.1.2.1 FB_MaximumDemandController

Programming

TF8010 17Version: 1.1

Function block for peak load optimization, which ensures that the set power limit is maintained by switching
up to eight consumers on or off. The consumers can be switched off according to their power and priority in
such a manner that the production process is not disturbed.

In order to distinguish the individual measurement cycles, a synchronization pulse is supplied by the
electricity supply company. It indicates the start of a new measuring cycle and must be linked to the input
bPeriodPulse. The actual power is recorded via the KL1501 counter terminal.

The function block works with a fixed measuring period of 15 minutes. If the synchronization pulse exceeds
the 16 minute limit, the output bEmergencySignal is set.

All consumers are switched on at the start of each measuring period. In the event that the power limit
(fAgreedPower) threatens to be exceeded within the measuring period, the consumers are switched off one
after the other. If the danger of an excess load no longer exists, the consumers are switched on again.

Special items, such as minimum power-on time, minimum power-off time or maximum power-off time can be
specified via an input variable. The priority of the individual consumers can similarly be determined.
Consumers with a low priority will be switched off before consumers with a high priority.

VAR_INPUT
bStart : BOOL;
fMeterConstant : LREAL;
fAgreedPower : LREAL;
bPeriodPulse : BOOL;
arrLoadParameter : ARRAY[1..8] OF ST_MDCLoadParameters;

bStart: The function block is activated by a positive edge at this input.

fMeterConstant: Meter constant [pulses / kWh].

fAgreedPower: This is the agreed power limit which, as far as possible, should not be exceeded in the
operational case [kW].

Programming

TF801018 Version: 1.1

bPeriodPulse: Synchronization pulse sent by the electricity supply company (ESC). This pulse starts the
measurement interval.

arrLoadParameter: Parameter structure of the respective consumer (see ST_MDCLoadParameters [} 94]).

VAR_OUTPUT
arrLoad : ARRAY[1..8] OF BOOL;
fAgreedEnergy : LREAL;
fInstantaneousEnergy : LREAL;
fActualEnergy : LREAL;
tRemainingTime : TIME;
fLastPeriodEnergy : LREAL;
bEmergencySignal : BOOL;
bError : BOOL;
nErrorId : UDINT;

arrLoad: This is an array of data type BOOL; consumers that are switched on are TRUE.

fAgreedEnergy: Agreed energy consumption [kWh].

fInstantaneousEnergy: Current energy consumption [kWh] over an integration period of 15s (internal
measuring interval).

fActualEnergy: Energy consumed at the "presently" observed point in time of the measuring period.

tRemainingTime: Time remaining until the next measurement interval.

fLastPeriodEnergy: Rated power from the preceding measuring period [kWh].

bEmergencySignal: This output is set as soon as the specified energy is exceeded.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command.

nErrorId: Contains the error code [} 93].

VAR_IN_OUT
stInDataKL1501 : ST_MDCInDataKL1501;
stOutDataKL1501 : ST_MDCOutDataKL1501;

stInDataKL1501: Linked to KL1501 (see ST_MDCInDataKL1501 [} 94]).

stOutDataKL1501: Linked to KL1501 (see ST_MDCOutDataKL1502 [} 95]).

Example
VAR_GLOBAL
 arrLoadParameters AT %MB100 : ARRAY[1..8] OF ST_MDCLoadParameters;

 (* KL1002 *)
 bPeriodPulse AT %IX6.0 : BOOL;

 (* KL1501*)
 stInDataKL1501 AT %IB0 : ST_MDCInDataKL1501;
 stOutDataKL1501 AT %QB0 : ST_MDCOutDataKL1501;

 (* KL2404 *)
 bLoadOut1 AT %QX6.0 : BOOL;
 bLoadOut2 AT %QX6.1 : BOOL;
 bLoadOut3 AT %QX6.2 : BOOL;
 bLoadOut4 AT %QX6.3 : BOOL;

 (* KL2404 *)
 bLoadOut5 AT %QX6.4 : BOOL;
 bLoadOut6 AT %QX6.5 : BOOL;
 bLoadOut7 AT %QX6.6 : BOOL;
 bEmergencySignal AT %QX6.7 : BOOL;
END_VAR

PROGRAM MAIN
VAR
 fbMaximumDemandController : FB_MaximumDemandController;
END_VAR

Programming

TF8010 19Version: 1.1

arrLoadParameters[1].bConnected := TRUE;
arrLoadParameters[1].nDegreeOfPriority := 1;
arrLoadParameters[1].tMINPowerOnTime := t#60s;
arrLoadParameters[1].tMINPowerOffTime := t#120s;
arrLoadParameters[1].tMAXPowerOffTime := t#600s;

arrLoadParameters[2].bConnected := TRUE;
arrLoadParameters[2].nDegreeOfPriority := 2;
arrLoadParameters[2].tMINPowerOnTime := t#60s;
arrLoadParameters[2].tMINPowerOffTime := t#120s;
arrLoadParameters[2].tMAXPowerOffTime := t#600s;

arrLoadParameters[3].bConnected := TRUE;
arrLoadParameters[3].nDegreeOfPriority := 3;
arrLoadParameters[3].tMINPowerOnTime := t#60s;
arrLoadParameters[3].tMINPowerOffTime := t#120s;
arrLoadParameters[3].tMAXPowerOffTime := t#300s;

arrLoadParameters[4].bConnected := TRUE;
arrLoadParameters[4].nDegreeOfPriority := 4;
arrLoadParameters[4].tMINPowerOnTime := t#20s;
arrLoadParameters[4].tMINPowerOffTime := t#30s;
arrLoadParameters[4].tMAXPowerOffTime := t#8m;

arrLoadParameters[5].bConnected := TRUE;
arrLoadParameters[5].nDegreeOfPriority := 5;
arrLoadParameters[5].tMINPowerOnTime := t#20s;
arrLoadParameters[5].tMINPowerOffTime := t#50s;
arrLoadParameters[5].tMAXPowerOffTime := t#20m;

arrLoadParameters[6].bConnected := TRUE;
arrLoadParameters[6].nDegreeOfPriority := 6;
arrLoadParameters[6].tMINPowerOnTime := t#30s;
arrLoadParameters[6].tMINPowerOffTime := t#1m;
arrLoadParameters[6].tMAXPowerOffTime := t#1m;

arrLoadParameters[7].bConnected := TRUE;
arrLoadParameters[7].nDegreeOfPriority := 7;
arrLoadParameters[7].tMINPowerOnTime := t#0s;
arrLoadParameters[7].tMINPowerOffTime := t#0s;
arrLoadParameters[7].tMAXPowerOffTime := t#1m;

arrLoadParameters[8].bConnected := FALSE;

fbMaximumDemandController(bStart := TRUE,
 fMeterConstant := 20000,
 fAgreedPower := 600,
 bPeriodPulse := bPeriodPulse,
 arrLoadParameters := arrLoadParameters,
 stInDataKL1501 := stInDataKL1501,
 stOutDataKL1501 := stOutDataKL1501);

bLoadOut1 := fbMaximumDemandController.arrLoad[1];
bLoadOut2 := fbMaximumDemandController.arrLoad[2];
bLoadOut3 := fbMaximumDemandController.arrLoad[3];
bLoadOut4 := fbMaximumDemandController.arrLoad[4];
bLoadOut5 := fbMaximumDemandController.arrLoad[5];
bLoadOut6 := fbMaximumDemandController.arrLoad[6];
bLoadOut7 := fbMaximumDemandController.arrLoad[7];
bEmergencySignal := fbMaximumDemandController.bEmergencySignal;

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF801020 Version: 1.1

4.1.3 Facade

4.1.3.1 FB_RoofWindow

The outputs bWindowOpen or bWindowClose are set through a positive edge at the inputs bOpen or bClose.
These remain asserted until the time tTurnOffTime has elapsed, or until the function block receives some
other command. Both outputs are immediately reset by a positive edge at the bStop input.

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 s and 1.0 s. The drive manufacturer can give
you a precise value.

Safety position

Moving to the safety position (e.g. in strong wind) can be achieved by setting the input bSafetyPosition. The
output bWindowClose is set for the time tTurnOffTime, and the output bWindowOpen is reset. Window
operation is disabled as long as the bSafetyPosition input is active.

VAR_INPUT
bClose : BOOL;
bOpen : BOOL;
bStop : BOOL;
bSafetyPosition : BOOL;
bLimitSwitchClose : BOOL;
bLimitSwitchOpen : BOOL;
tTurnOffTime : TIME := t#60s;
tSwitchOverDeadTime : TIME := t#400ms;

bClose: Set output bWindowClose and reset output bWindowOpen. The output bWindowClose remains
latched.

bOpen: Set output bWindowOpen and reset output bWindowClose. The output bWindowOpen remains
latched.

bStop: Reset outputs bWindowClose and bWindowOpen

bSafetyPosition: The safety position is approached. The window is closed for the time tTurnOffTime.
Window operation is blocked as long as the input is active.

bLimitSwitchClose: Optional limit switch. If bClose is set and is not set within
tTurnOffTimebLimitSwitchClose, bErrorLimitSwitchClose is set.

bLimitSwitchOpen: Optional limit switch. If bOpen is set and is not set within
tTurnOffTimebLimitSwitchOpen, bErrorLimitSwitchOpen is set.

tTurnOffTime: If no input is activated, then the outputs are reset after this period of time. The outputs are
not automatically reset if the specified duration is 0. The value given here should be about 10% larger than
the travel time that is actually measured.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

Programming

TF8010 21Version: 1.1

VAR_OUTPUT
bWindowOpen : BOOL;
bWindowClose : BOOL;
bErrorLimitSwitchClose : BOOL;
bErrorLimitSwitchOpen : BOOL;

bWindowOpen: The window opens.

bWindowClose: The window closes.

bErrorLimitSwitchClose: Error relating to the optional limit switch during closing.

bErrorLimitSwitchOpen: Error relating to the optional limit switch during opening.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.3.2 FB_VenetianBlind

There are three different ways in which the blinds may be controlled:

• A positive edge at the bUp or bDown inputs set the bBlindUp or bBlindDown outputs respectively.
These remain asserted until the time tTurnOffTime has elapsed, or until the function block receives
some other command. Both outputs are immediately reset by a positive edge at the bStop input.

• Static signals are provided to the bSwitchOverUp or bSwitchOverDown inputs (e.g. by buttons). These
set the bBlindUp and bBlindDown outputs. If this signal is asserted for longer than tSwitchOverTime,
the outputs are latched. This means that the outputs will continue to be asserted, even if the signals at
the inputs are removed again. In most cases, a value of 500 ms is sufficient for the tSwitchOverTime
parameter. However, the output only remains asserted for the time tTurnOffTime, or until a new
command is given to the function block.

• This last variation can be useful if the user wants to alter the setting of the blind step by step. Each
positive edge at the bStepUp or bStepDown inputs sets the corresponding output for the time
tStepTime. A value of 200 ms has been found effective for tStepTime.

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 s and 1.0 s. The drive manufacturer can give
you a precise value.

Programming

TF801022 Version: 1.1

Safety position

Travel to the safety position (e.g. because there is a strong wind or because maintenance is being carried
out at the window) can be achieved by setting the bSafetyPosition input. The output bBlindUp is set and the
output bBlindDown reset for the period specified by tTurnOffTime. Operation of the blinds is prevented for as
long as the bSafetyPosition input is active.

Shading position

Under conditions of above-average sunshine, the blinds can be moved to the shading position. After
presenting a positive edge to the bShadowPosition input, the blinds are lowered for the period of time
specified by tShadowTurnOffTime. The blind is then moved upwards again for the period of time specified by
tShadowTurnAroundTime. A time of about 2 seconds is usually set for this. This prevents the room from
being completely darkened. During a change of direction, a pause of duration tSwitchOverDeadTime is
maintained. Travel to the shading position can be interrupted at any time by a new command.

VAR_INPUT
bUp : BOOL;
bDown : BOOL;
bStop : BOOL;
bSwitchOverUp : BOOL;
bSwitchOverDown : BOOL;
tSwitchOverTime : TIME := t#500ms;
bStepUp : BOOL;
bStepDown : BOOL;
tStepTime : TIME := t#200ms;
bShadowPosition : BOOL;
tShadowTurnAroundTime : TIME := t#0s;
tShadowTurnOffTime : TIME := t#20s;
bSafetyPosition : BOOL;
tTurnOffTime : TIME := t#60s;
tSwitchOverDeadTime : TIME := t#400ms;

bUp: Set the bBlindUp output and reset the bBlindDown output. The bBlindUp output remains latched.

bDown: Set the bBlindDown output and reset the bBlindUp output. The bBlindDown output remains latched.

bStop: Reset the bBlindUp and bBlindDown outputs.

bSwitchOverUp: Set the bBlindUp output and reset the bBlindDown output. If the signal remains present for
longer than tSwitchOverTime, the output bBlindUp remains latched.

bSwitchOverDown: Set the bBlindDown output and reset the bBlindUp output. If the signal remains present
for longer than tSwitchOverTime, the output bBlindDown remains latched.

tSwitchOverTime: Gives the time for which the bSwitchUp and bSwitchDown inputs must remain asserted
before the outputs are latched. If the value is 0, the outputs are latched immediately.

bStepUp: Reset the bBlindDown output and set the bBlindUp output for the time tStepTime.

bStepDown: Reset the bBlindUp output and set the bBlindDown output for the time tStepTime.

tStepTime: If the blind is controlled through the bStepUp or bStepDown inputs, the outputs remain asserted
for this period of time. The outputs are not set if the specified duration is 0.

bShadowPosition: The shading position is approached.

tShadowTurnAroundTime: The blind travels in the opposite direction for the period of time specified by
tShadowTurnAroundTime after the shading position has been reached.

tShadowTurnOffTime: The time for which the bBlindDown output is set in order to reach the shading
position. A time of greater than 0 is necessary for the shading position to be approached.

bSafetyPosition: The safety position is approached. To do this, the blind is raised for the period of time
specified by tTurnOffTime. It is not possible to operate the blinds while this input is set.

tTurnOffTime: If no input is activated, then the outputs are reset after this period of time. The outputs are
not automatically reset if the specified duration is 0. The value given here should be about 10% larger than
the travel time that is actually measured.

Programming

TF8010 23Version: 1.1

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;

bBlindUp: The blind opens.

bBlindDown: The blind closes.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.3.3 FB_VenetianBlindEx

Four different methods are available for controlling the blind:

• A positive edge at the bUp or bDown inputs set the bBlindUp or bBlindDown outputs respectively.
These remain asserted until the time tDriveTime + 10% has elapsed, or until the function block
receives some other command. Both outputs are immediately reset by a positive edge at the bStop
input.

• Static signals are provided to the bSwitchOverUp or bSwitchOverDown inputs (e.g. by buttons). These
set the bBlindUp and bBlindDown outputs. If this signal is asserted for longer than tSwitchOverTime,
the outputs are latched. This means that the outputs will continue to be asserted, even if the signals at
the inputs are removed again. In most cases, a value of 500 ms is sufficient for the tSwitchOverTime
parameter. However, the output only remains asserted for the time tDriveTime + 10%, or until a new
command is given to the function block.

• In certain applications it may be useful for the operator to be able to alter the blind position step by
step. Each positive edge at the bStepUp or bStepDown inputs sets the corresponding output for the
time tStepTime. A value of 200 ms has been found effective for tStepTime.

• Unlike the FB_VenetianBlind() [} 21] function block, this function block also enables movement to an
absolute position. A percentage value is applied to input nSetPosition, and subsequently a positive
edge is applied to input bPosition.

Programming

TF801024 Version: 1.1

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 s and 1.0 s. The drive manufacturer can give
you a precise value.

Safety position

Travel to the safety position (e.g. because there is a strong wind or because maintenance is being carried
out at the window) can be achieved by setting the bSafetyPosition input. The output bBlindUp is set and the
output bBlindDown reset for the period specified by tDriveTime + 10%. Operation of the blinds is prevented
for as long as the bSafetyPosition input is active.

Shading position

Under conditions of above-average sunshine, the blinds can be moved to the shading position. After
applying a positive edge to the input bShadowPosition, the blind is moved to the position
nShadowSetPosition. The blind is then moved upwards again for the period of time specified by
tShadowTurnAroundTime. This prevents the room from being completely darkened. If the blind had moved
upwards during the approach of the shading position, it is moved downwards for the time period
tDriveSwitchOverTime - tShadowTurnAroundTime. The same angle will therefore be set as if the blind had
been moved downwards for darkening purposes.
During a change of direction, a pause of duration tSwitchOverDeadTime is maintained. Travel to the shading
position can be interrupted at any time by a new command.

The set shading time tShadowTurnAroundTime must never be longer than the time for the change
of direction tDriveSwitchOverTime.

Moving to an absolute position

Comments

In most cases a blind will not provide feedback about its current position. Therefore, this can only be
calculated via the travel time. The precision depends on the uniformity of the blind speed. Furthermore, the
speed differences between opening and closing should be as small as possible.
The positions are always specified in percent. 0% corresponds to fully up, 100% to fully down. If a value
greater than 100 is specified, it will be limited to 100 within the function block.

Determining the parameters

First of all, certain blind parameters have to be determined. One parameter is the travel time. This is the time
it takes for the blind to open or close fully. The second parameter is the time required for a change of
direction. During a change of direction, the angle between the individual blades will change. The travel time
is transferred to the parameter tDriveTime. The duration for a direction change is transferred to
tDriveSwitchOverTime.

Referencing a function block

Since the current position of the blind has to be calculated, inaccuracies during operation will accumulate. In
order to limit deviations, the function block will automatically reference itself as often as possible. This
happens when the blind is moved fully up or down and the corresponding output is reset automatically. The
corresponding time is tDriveTime + 10%.

VAR_INPUT
bUp : BOOL;
bDown : BOOL;
bStop : BOOL;
bSwitchOverUp : BOOL;
bSwitchOverDown : BOOL;
tSwitchOverTime : TIME := t#500ms;
bStepUp : BOOL;
bStepDown : BOOL;
tStepTime : TIME := t#200ms;
bPosition : BOOL;

Programming

TF8010 25Version: 1.1

nSetPosition : USINT;
bShadowPosition : BOOL;
nShadowSetPosition : USINT := 80;
tShadowTurnAroundTime : TIME:= t#0s;
bSafetyPosition : BOOL;
tDriveTime : TIME := t#60s;
tDriveSwitchOverTime : TIME := t#200ms;
tSwitchOverDeadTime : TIME := t#400ms;

bUp: Set the bBlindUp output and reset the bBlindDown output. The bBlindUp output remains latched.

bDown: Set the bBlindDown output and reset the bBlindUp output. The bBlindDown output remains latched.

bStop: Reset the bBlindUp and bBlindDown outputs.

bSwitchOverUp: Set the bBlindUp output and reset the bBlindDown output. If the signal remains present for
longer than tSwitchOverTime, the output bBlindUp remains latched.

bSwitchOverDown: Set the bBlindDown output and reset the bBlindUp output. If the signal remains present
for longer than tSwitchOverTime, the output bBlindDown remains latched.

tSwitchOverTime: Gives the time for which the bSwitchUp and bSwitchDown inputs must remain asserted
before the outputs are latched. If the value is 0, the outputs are latched immediately.

bStepUp: Reset the bBlindDown output and set the bBlindUp output for the time tStepTime.

bStepDown: Reset the bBlindUp output and set the bBlindDown output for the time tStepTime.

tStepTime: If the blind is controlled through the bStepUp or bStepDown inputs, the outputs remain asserted
for this period of time. The outputs are not set if the specified duration is 0.

bPosition: Move blind to specified position.

nSetPosition: Position (0%-100%) to which the blind is to be moved, after a positive edge has been applied
to input bPosition. 0% corresponds to fully up, 100% corresponds to fully down.

bShadowPosition: The shading position is approached.

nShadowSetPosition: Shading position (0%-100%) to which the blind is to be moved, after a positive edge
has been applied to input bShadowPosition.

tShadowTurnAroundTime: Once the shading position has been reached, the blind is moved upwards for
the period tShadowTurnAroundTime.

bSafetyPosition: The safety position is approached. To do this, the blind is raised for the period tDriveTime
+ 10%. It is not possible to operate the blinds while this input is set.

tDriveTime: Travel time of the blind from fully up to fully down. If no input is activated, the outputs are reset
after the period tDriveTime + 10%. The outputs are not automatically reset if the specified duration is 0. In
this case, the blind cannot be moved to absolute positions.

tDriveSwitchOverTime: Period of time required for a change of direction of the blind.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
nActualPosition : USINT;
bCalibrated : BOOL;

bBlindUp: The blind opens.

bBlindDown: The blind closes.

nActualPosition: Current position in percent.

bCalibrated: Indicates whether the blind is calibrated.

Programming

TF801026 Version: 1.1

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.3.4 FB_VenetianBlindEx1Switch

Blind function block with the same functionality as FB_VenetianBlindEx() [} 23] but with an input bSwitch for
jogging up and down.
Four different methods are available for controlling the blind:

• A positive edge at the bUp or bDown inputs set the bBlindUp or bBlindDown outputs respectively.
These remain asserted until the time tDriveTime + 10% has elapsed, or until the function block
receives some other command. Both outputs are immediately reset by a positive edge at the bStop
input.

• The input bSwitch, which is usually linked to a push button, can be used to switch the blind movement
between up or down. In contrast to FB_VenetianBlindEx() [} 23], the outputs immediately switch to
latching. Pressing the button switches between moving, stopping, moving in the opposite direction,
stopping and moving again. The outputs remain active for a maximum period of tDriveTime + 10% or
until a new command is issued for the function block. Switching is locked for the time
tSwitchOverDeadTime.

• In certain applications it may be useful for the operator to be able to alter the blind position step by
step. Each positive edge at the bStepUp or bStepDown inputs sets the corresponding output for the
time tStepTime. A value of 200 ms has been found effective for tStepTime.

• Unlike the FB_VenetianBlind() [} 21] function block, this function block also enables movement to an
absolute position. A percentage value is applied to input nSetPosition, and subsequently a positive
edge is applied to input bPosition.

The tSwitchOverDeadTime can be used to prevent damage to the drive motor caused by immediate
changes in direction. In most cases, this value is between 0.5 s and 1.0 s. The drive manufacturer can give
you a precise value.

Safety position

Travel to the safety position (e.g. because there is a strong wind or because maintenance is being carried
out at the window) can be achieved by setting the bSafetyPosition input. The output bBlindUp is set and the
output bBlindDown reset for the period specified by tDriveTime + 10%. Operation of the blinds is prevented
for as long as the bSafetyPosition input is active.

Programming

TF8010 27Version: 1.1

Shading position

Under conditions of above-average sunshine, the blinds can be moved to the shading position. After
applying a positive edge to the input bShadowPosition, the blind is moved to the position
nShadowSetPosition. The blind is then moved upwards again for the period of time specified by
tShadowTurnAroundTime. This prevents the room from being completely darkened. If the blind had moved
upwards during the approach of the shading position, it is moved downwards for the time period
tDriveSwitchOverTime - tShadowTurnAroundTime. The same angle will therefore be set as if the blind had
been moved downwards for darkening purposes.
During a change of direction, a pause of duration tSwitchOverDeadTime is maintained. Travel to the shading
position can be interrupted at any time by a new command.

Moving to an absolute position

Comments

In most cases a blind will not provide feedback about its current position. Therefore, this can only be
calculated via the travel time. The precision depends on the uniformity of the blind speed. Furthermore, the
speed differences between opening and closing should be as small as possible.
The positions are always specified in percent. 0% corresponds to fully up, 100% to fully down. If a value
greater than 100 is specified, it will be limited to 100 within the function block.

Determining the parameters

First of all, certain blind parameters have to be determined. One parameter is the travel time. This is the time
it takes for the blind to open or close fully. The second parameter is the time required for a change of
direction. During a change of direction, the angle between the individual blades will change. The travel time
is transferred to the parameter tDriveTime. The duration for a direction change is transferred to
tDriveSwitchOverTime.

Referencing a function block

Since the current position of the blind has to be calculated, inaccuracies during operation will accumulate. In
order to limit deviations, the function block will automatically reference itself as often as possible. This
happens when the blind is moved fully up or down and the corresponding output is reset automatically. The
corresponding time is tDriveTime + 10%.

VAR_INPUT
bUp : BOOL;
bDown : BOOL;
bStop : BOOL;
bSwitch : BOOL;
bStepUp : BOOL;
bStepDown : BOOL;
tStepTime : TIME := t#200ms;
bPosition : BOOL;
nSetPosition : USINT;
bShadowPosition : BOOL;
nShadowSetPosition : USINT := 80;
tShadowTurnAroundTime : TIME := t#0s;
bSafetyPosition : BOOL;
tDriveTime : TIME := t#60s;
tDriveSwitchOverTime : TIME := t#200ms;
tSwitchOverDeadTime : TIME := t#400ms;

bUp: Set the bBlindUp output and reset the bBlindDown output. The bBlindUp output remains latched.

bDown: Set the bBlindDown output and reset the bBlindUp output. The bBlindDown output remains latched.

bStop: Reset the bBlindUp and bBlindDown outputs.

bSwitch: Switching input for jogging the blind, see description above. Switches between moving, stopping,
moving in the opposite direction, stopping and moving again. In each case the activated output immediately
switches to latching.

Programming

TF801028 Version: 1.1

bStepUp: Reset the bBlindDown output and set the bBlindUp output for the time tStepTime.

bStepDown: Reset the bBlindUp output and set the bBlindDown output for the time tStepTime.

tStepTime: If the blind is controlled through the bStepUp or bStepDown inputs, the outputs remain asserted
for this period of time. The outputs are not set if the specified duration is 0.

bPosition: Move blind to specified position.

nSetPosition: Position (0%-100%) to which the blind is to be moved after a positive edge has been applied
to input bPosition. 0% corresponds to fully up, 100% corresponds to fully down.

bShadowPosition: The shading position is approached.

nShadowSetPosition: Shading position (0%-100%) to which the blind is to be moved, after a positive edge
has been applied to input bShadowPosition.

tShadowTurnAroundTime: Once the shading position has been reached, the blind is moved upwards for
the period tShadowTurnAroundTime.

bSafetyPosition: The safety position is approached. To do this, the blind is moved upwards for the period
tDriveTime + 10%. It is not possible to operate the blinds while this input is set.

tDriveTime: Travel time of the blind from fully up to fully down. If no input is activated, the outputs are reset
after the period tDriveTime + 10%. The outputs are not automatically reset if the specified duration is 0. In
this case, the blind cannot be moved to absolute positions.

tDriveSwitchOverTime: Period of time required for a change of direction of the blind.

tSwitchOverDeadTime: Dwell time at a change of direction. Both outputs are reset during this period.

VAR_OUTPUT
bBlindUp : BOOL;
bBlindDown : BOOL;
nActualPosition : USINT;
bCalibrated : BOOL;

bBlindUp: The blind opens.

bBlindDown: The blind closes.

nActualPosition: Current position in percent.

bCalibrated: Indicates whether the blind is calibrated.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.4 Filter functions

4.1.4.1 FB_PT1

Programming

TF8010 29Version: 1.1

PT1 element for smoothing of input variables.

This function block is active continuously. The output fOut always follows the input value fIn multiplied by Kp
with an exponential curve:

If Kp is 1 the output value directly follows the input value. fOut has reached 63% of the input value after the
time tT1 has elapsed, after 3 x tT1 the value is 95%.

The mathematical formula is:

The following time-discrete formula is used for the calculation in the PLC:

With a continuously changing input fIn, fOut behaves as follows (fIn= 0..33000, Kp= 1, T1= 5s):

Programming

TF801030 Version: 1.1

Note on damping times: Since this function block is a time-discrete model of a PT1 element, it only works
correctly if the damping time is significantly longer than the set cycle time. To be on the safe side, if a
damping time is entered that is less than twice the set cycle time it is internally set to zero. A damping time of
0s means that the output variable directly follows the input variable multiplied by Kp.

VAR_INPUT
fIn : LREAL;
fKp : LREAL := 1;
tT1 : TIME := t#10s;
tCycletime : TIME := t#10ms;
bSetActual : BOOL;

fIn: Input value.

fkP: Gain factor, preset value: 1.

tT1: Damping time, preset value: 10 s.

tCycleTime: PLC cycle time, preset value: 10 ms.

bSetActual: Sets the output fOut directly to the input value fIn.

VAR_OUTPUT
fOut : LREAL;

fOut: Output value.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 31Version: 1.1

4.1.4.2 FB_PT2

PT2 element for smoothing of input variables.

This function block is active continuously. The output fOut always follows the input value fIn multiplied by Kp.

This PT2 element consists of a series of two PT1 elements; the time constants T1 and T2 can have different
values. The step response (see above) shows a significantly more attenuated subsequent behavior
compared to the PT1 element (dashed) right from the start.

With a continuously changing input fIn, fOut behaves as follows (fIn= 0..33000, Kp= 1, T1,T2= 5s):

Programming

TF801032 Version: 1.1

In comparison, the dotted line shows the behavior of a PT1 element [} 28] with fIn= 0..33000, Kp= 1, T1= 5s.

Note on damping times: Since this function block is a time-discrete model of a PT2 element, it only works
correctly if the damping time is significantly longer than the set cycle time. To be on the safe side, if damping
times are entered that are less than twice the set cycle time they are internally set to zero. As already
mentioned, the PT2 element consists of two PT1 elements connected in series. If one of the two damping
times is set to zero, the PT2 element is reduced to a PT1 element. If both damping times are set to zero, the
output variable directly follows the input variable multiplied by Kp.

VAR_INPUT
fIn : LREAL;
fKp : LREAL := 1;
tT1 : TIME := t#10s;
tT2 : TIME := t#10s;
tCycletime : TIME := t#10ms;
bSetActual : BOOL;

fIn: Input value.

fkP: Gain factor, preset value: 1.

tT1: Damping time 1, preset value: 10 s.

tT2: Damping time 2, preset value: 10 s.

tCycleTime: PLC cycle time, preset value: 10 ms.

bSetActual: Sets the output fOut directly to the input value fIn.

VAR_OUTPUT
fOut : LREAL;

fOut: Output value.

Programming

TF8010 33Version: 1.1

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.5 Lighting

4.1.5.1 FB_ConstantLightControlEco

The function block is used for constant light control.

The system tries to match a specified setpoint through cyclic dimming. The control dynamics are determined
by a dead time (tDeadTime) and the step size (nStepSize). The dead time specifies the waiting time between
the individual steps or increments of the control value, which are determined by the set step size. The
smaller the dead time, the faster the control. A freely definable hysteresis (nHysteresis) prevents continuous
oscillation around the setpoint. If the actual value is within the hysteresis range around the setpoint, the
lamps brightness remains unchanged.

NOTE
If the set step size nStepSize is too large or the hysteresis nHysteresis is too small, the hysteresis range
may be "missed". This cannot be prevented by the function block, because the light output nLightLevel is
only physically linked to the recorded actual light value, nActualLevel.

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;
nSetpointValue : UINT := 16000;
nActualValue : UINT;
nHysteresis : UINT := 100;
nMaxLevel : UINT := 32767;
nMinLevel : UINT := 3276;
nStepSize : UINT := 10;
tDeadTime : TIME := t#50ms;
nOptions : DWORD;

bEnable: Enables the function block. If this input is FALSE, the inputs bOn, bOff and bToogle are disabled.
The control value remains unchanged.

bOn: Switches the controlled devices to nMaxLevel and activates constant light control.

bOff: Switches the addressed devices off and disables constant light control.

Programming

TF801034 Version: 1.1

bToggle: The lighting is switched on or off, depending on the state of the reference device.

nSetpointValue: This input is used for specifying the setpoint.

nActualValue: The actual value is applied at this input.

nHysteresis: Control hysteresis around the setpoint. If the actual value is within this range, the control
values for the lamps remain unchanged.

nMaxLevel: Maximum value of the control value at nLightLevel.

nMinLevel: Minimum value of the control value at nLightLevel. If this value is to be undercut by a dimming
process, nLightLevel is set directly to "0". On the other hand, if nLightLevel is set to "0" when control is
active, the dimming process starts directly at this value.

nStepSize: Step size with which the control value nLightLevel is changed.

tDeadTime: Dead time between the individual steps (up or down) of the control value.

nOptions: Currently not used. Reserved for future extensions.

VAR_OUTPUT
nDeviation : INT;
bControllerIsActive : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

nDeviation: Current control deviation (setpoint/actual value).

bControllerIsActive: This output is set once the control is activated.

bBusy: When the function block is activated, this output is always active when changes are made to the
control value.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. Is reset to FALSE by the execution of a command at
the inputs.

nErrorId: Contains the command-specific error code of the most recently executed command. Is reset to "0"
by the execution of a command at the inputs.
See Error codes [} 93].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Output control value of the function block and reference to the light output value. This value is
defined as In-Out variable because the function block reads and writes the light value.

Flow diagram

The following diagram illustrates the regular control behavior:

Programming

TF8010 35Version: 1.1

The control is enabled by a TRUE signal at input bEnable. When a positive edge is encountered at bOn,
nLightLevel is set to the maximum value. This also influences the measured light value nActualValue, which
increases, so that dimming becomes necessary. nLightLevel is now reduced step-by-step until the measured
light value nActualValue is in the hysteresis range around the setpoint (nSetpointValue - 0.5*nHysteresis < x
< nSetpointValue + 0.5*nHysteresis).
If, for example, the measured light value then falls, e.g. due to cloudiness, the control system counteracts
this by gradually increasing the lighting level until the light value is back in the hysteresis band.

If the step size nStepSize is too large or the hysteresis is too small, an oscillation around the setpoint can
occur. Because the hysteresis is small compared to the step changes, the hysteresis range is constantly
missed:

Programming

TF801036 Version: 1.1

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 37Version: 1.1

4.1.5.2 FB_Dimmer1Switch

The function block is used to dim lights with a switch.

Operating by means of the bSwitchDimm input

The light is switched on or off by a short signal at the bSwitchDimm input. Dimmer mode will be activated if
the signal remains for longer than tSwitchOverTime (typical recommended value: 200 ms). The output signal
then cycles between nOutMin and nOutMax. In order to be able to set the maximum or minimum value more
easily, the output signal pauses at the level of the maximum and minimum values for the time given by
tCycleDelay. When the signal is once more removed, the output signal being generated at that time is
retained. Another pulse at the input will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a positive edge is applied to the bOn or bOff inputs. For
example, for global on/off functions. The output value is set to 0 when switching off. The switch-on behavior
can be affected by the memory function (see below).

Operation by means of the bSetDimmValue and nDimmValue inputs

If the value of nDimmValue changes, the signal will be passed through directly to the output. The significant
point here is that the value changes. The lighting is switched off by changing the value to 0. If there is a
positive edge at the bSetDimmValue input, the value of nDimmValue immediately appears at the output.
Immediate modification of the output can be suppressed by a static 1- signal at the bSetDimmValue input.
This makes it possible to apply a value to the nDimmValue input, but for this value only to be passed to the
output at the next positive edge of bSetDimmValue.
The bSetDimmValue and nDimmValue inputs can be used to implement a variety of lighting scenarios.
Direct setting of the output, by means of nDimmValue, can be used to achieve particular brightness levels.
Either directly or by continuously changing the value. nDimmValue must have a value between nOutMin and
nOutMax. The value 0 is an exception. If the value is outside this range, the output value is limited to the
upper or lower limit, as appropriate.

The memory function

It is necessary to determine whether the memory function (bMemoryModeOn input) is active or not at switch-
on. If the memory function is active, then the last set value is placed at the output as soon as the lamp is
switched on. If the memory function is not active, then the value specified by the
nOnValueWithoutMemoryMode parameter is output. It is irrelevant, in this case, whether the light it has been

Programming

TF801038 Version: 1.1

switched on by means of the bOn input or the bSwitchDimm input. It should be noted that the
nOnValueWithoutMemoryMode parameter must lie between nOutMin and nOutMax. If this is not the case,
the output value is adjusted to the upper or lower limit, as appropriate.

Fast dimming up/down when switching on and off

Lighting is particularly pleasant if sudden changes are replaced by a slow change to the desired value. This
mode can be activated both for switching on and for switching off by means of the two inputs,
bDimmOnMode and bDimmOffMode. The tDimmOnTime and tDimmOffTime parameters specify the time
that will be taken by the switching processes. This value is always related to the minimum and maximum
possible output values (nOutMin and nOutMax). The bOn and bOff inputs are one way in which the switch
on/off commands may be given. Alternatively, a short pulse can be provided to the bSwitchDimm input. If the
nDimmValue input is set to 0, the output is modified without delay. The same is true if the output is set by a
positive edge at the bSetDimmValue input.

Comments on the tSwitchOverTime and tDimmTime parameters

If a duration of 0 is specified for the tSwitchOverTime parameter, while a value of greater than 0 is specified
for tDimmTime, then the tSwitchDimm input can only be used to dim the light. Switching on and off is only
possible with the bOn and bOff inputs.

If the tDimmTime parameter is 0, the bSwitchDimm input can only be used to switch the light on or off. In this
case, the value of tSwitchOverTime is irrelevant.

VAR_INPUT
bSwitchDimm : BOOL;
bOn : BOOL;
bOff : BOOL;
bSetDimmValue : BOOL;
nDimmValue : UINT;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tCycleDelay : TIME := t#10ms;
bMemoryModeOn : BOOL := FALSE;
nOnValueWithoutMemoryMode : UINT := 20000;
bDimmOnMode : BOOL := FALSE;
tDimmOnTime : TIME := t#0s;
bDimmOffMode : BOOL := FALSE;
tDimmOffTime : TIME := t#0s;
nOutMin : UINT := 5000;
nOutMax : UINT := 32767;

bSwitchDimm: Switches or dims the output.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

bSetDimmValue: Switches the output to the value nDimmValue.

nDimmValue: The value is immediately applied to the output when there is a change.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the bSwitchDimm
input.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

bMemoryModeOn: Switches over to use the memory function, so that the previous value is written to the
output as soon as it is switched on.

nOnValueWithoutMemoryMode: Switch-on value if the memory function is not active.

bDimmOnMode: The output value is increased in steps when switching on.

tDimmOnTime: Time period during which the light level is increased when the light is switched on.
bDimmOnMode must be active.

Programming

TF8010 39Version: 1.1

bDimmOffMode: The output value is reduced in steps when switching off

tDimmOffTime: Time period during which the light is reduced when the light is switched off. bDimmOffMode
must be active.

nOutMin: Minimum output value.

nOutMax: Maximum output value. If the parameter nOutMin is not smaller than nOutMax, the output will
remain at 0.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: analog output value.

bLight: digital output value. This is set if nOut is greater than 0.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.5.3 FB_Dimmer1SwitchEco

This function block is a memory-saving variant of FB_Dimmer1Switch() [} 37]. It does not have the special
functions "Set brightness value" and "Switch off memory function", which may not be required for many
applications. Moreover, the values nOutMin and nOutMax of the FB_Dimmer1Switch() [} 37] are set internally
here to 0 and 32767 respectively. This output span corresponds to the display range of an analog output
terminal. The tPLCCycle input is important. This time is used to calculate internally the amount by which the
nOut output must be increased per cycle - that saves additional time calculations.

Operating by means of the bSwitchDimm input

The light is switched on or off by a short signal at the bSwitchDimm input. Dimmer mode will be activated if
the signal remains for longer than tSwitchOverTime (typical recommended value: 200ms). The output signal
moves cyclically between 0 and 32767. In order to be able to set the maximum or minimum value more
easily, the output signal pauses at the level of the maximum and minimum values for the time given by
tCycleDelay. When the signal is once more removed, the output signal being generated at that time is
retained. Another pulse at the input will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a positive edge is applied to the bOn or bOff inputs. For
example, for global on/off functions. The output value is set to 0 when switching off.

Programming

TF801040 Version: 1.1

The memory function

In contrast to FB_Dimmer1Switch() [} 37], where the memory function can be activated or deactivated via the
input bMemoryModeOn , the memory function is always active in this memory-saving version. This means
that the last-set value is adopted as the brightness value when switching on. It is irrelevant, in this case,
whether the light it has been switched on by means of the bOn input or the bSwitchDimm input.

Comment on the tSwitchOverTime parameter

If a duration of 0 is specified for the parameter tSwitchOverTime, the bSwitchDimm input can only be used to
dim the light. Switching on and off is only possible with the bOn and bOff inputs.

VAR_INPUT
bSwitchDimm : BOOL;
bOn : BOOL;
bOff : BOOL;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tCycleDelay : TIME := t#500ms;
tPLCCycle : TIME := t#10ms;

bSwitchDimm: Switches or dims the output.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the bSwitchDimm
input.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

tPLCCycle: the set PLC cycle time.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: analog output value.

bLight: digital output value. This is set if nOut is greater than 0.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 41Version: 1.1

4.1.5.4 FB_Dimmer2Switch

The function range of the function block corresponds to that of the function block FB_Dimmer1Switch() [} 37].
The difference is that in the function block FB_Dimmer2Switch two switches are connected. This allows the
user to choose specifically between dimming up or dimming down.

Operation by means of the bSwitchDimmUp and bSwitchDimmDown inputs

The light is switched on or off by a short signal at the bSwitchDimmUp or bSwitchDimmDown inputs. Dimmer
mode will be activated if the signal remains for longer than tSwitchOverTime (typical recommended value:
200ms). The output signal goes to nOutMin or nOutMax. When the signal is once more removed, the output
signal being generated at that time is retained. Another pulse at one of the inputs will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a positive edge is applied to the bOn or bOff inputs. For
example, for global on/off functions. The output value is set to 0 when switching off. The switch-on behavior
can be affected by the memory function (see below).

Operation by means of the bSetDimmValue and nDimmValue inputs

If the value of nDimmValue changes, the signal will be passed through directly to the output. The significant
point here is that the value changes. The lighting is switched off by changing the value to 0. If there is a
positive edge at the bSetDimmValue input, the value of nDimmValue immediately appears at the output.
Immediate modification of the output can be suppressed by a static 1- signal at the bSetDimmValue input.
This makes it possible to apply a value to the nDimmValue input, but for this value only to be passed to the
output at the next positive edge of bSetDimmValue.
The bSetDimmValue and nDimmValue inputs can be used to implement a variety of lighting scenarios.
Direct setting of the output, by means of nDimmValue, can be used to achieve particular brightness levels.
Either directly or by continuously changing the value. nDimmValue must have a value between nOutMin and
nOutMax. The value 0 is an exception. If the value is outside this range, the output value is limited to the
upper or lower limit, as appropriate.

The memory function

It is necessary to determine whether the memory function (bMemoryModeOn input) is active or not at switch-
on. If the memory function is active, then the last set value is placed at the output as soon as the lamp is
switched on. If the memory function is not active, then the value specified by the
nOnValueWithoutMemoryMode parameter is output. It is irrelevant, in this case, whether the light it has been

Programming

TF801042 Version: 1.1

switched on by means of the bOn input or one of the bSwitchDimmUp or bSwitchDimmDown inputs. It
should be noted that the nOnValueWithoutMemoryMode parameter must lie between nOutMin and
nOutMax. If this is not the case, the output value is adjusted to the upper or lower limit, as appropriate.

Fast dimming up/down when switching on and off

Lighting is particularly pleasant if sudden changes are replaced by a slow change to the desired value. This
mode can be activated both for switching on and for switching off by means of the two inputs,
bDimmOnMode and bDimmOffMode. The tDimmOnTime and tDimmOffTime parameters specify the time
that will be taken by the switching processes. This value is always related to the minimum and maximum
possible output values (nOutMin and nOutMax). The bOn and bOff inputs are one way in which the switch
on/off commands may be given. Alternatively, a short pulse can be provided to either of the inputs
bSwitchDimmUp or bSwitchDimmDown. If the nDimmValue input is set to 0, the output is modified without
delay. The same is true if the output is set by a positive edge at the bSetDimmValue input.

Comments on the tSwitchOverTime and tDimmTime parameters

If a duration of 0 is specified for the tSwitchOverTime parameter, while a value of greater than 0 is specified
for tDimmTime, then the bSwitchDimmUp or bSwitchDimmDown inputs can only be used to dim the light.
Switching on and off is only possible with the bOn and bOff inputs.

If the tDimmTime parameter is 0, the bSwitchDimmUp or bSwitchDimmDown inputs can only be used to
switch the light on or off. In this case, the value of tSwitchOverTime is irrelevant.

VAR_INPUT
bSwitchDimmUp : BOOL;
bSwitchDimmDown : BOOL;
bOn : BOOL;
bOff : BOOL;
bSetDimmValue : BOOL;
nDimmValue : UINT;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
bMemoryModeOn : BOOL := FALSE;
nOnValueWithoutMemoryMode : UINT := 20000;
bDimmOnMode : BOOL := FALSE;
tDimmOnTime : TIME := t#0s;
bDimmOffMode : BOOL := FALSE;
tDimmOffTime : TIME := t#0s;
nOutMin : UINT := 5000;
nOutMax : UINT := 32767;

bSwitchDimmUp: Switches or dims the output Up.

bSwitchDimmDown: Switches or dims the output Down.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

bSetDimmValue: Switches the output to the value nDimmValue.

nDimmValue: The value is immediately applied to the output when there is a change.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the
bSwitchDimmUp and bSwitchDimmDown inputs.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

bMemoryModeOn: Switches over to use the memory function, so that the previous value is written to the
output as soon as it is switched on.

nOnValueWithoutMemoryMode: Switch-on value if the memory function is not active.

bDimmOnMode: The output value is increased in steps when switching on.

tDimmOnTime: Time period during which the light level is increased when the light is switched on.
bDimmOnMode must be active.

Programming

TF8010 43Version: 1.1

bDimmOffMode: The output value is reduced in steps when switching off

tDimmOffTime: Time period during which the light is reduced when the light is switched off. bDimmOffMode
must be active.

nOutMin: Minimum output value.

nOutMax: Maximum output value. If the parameter nOutMin is not smaller than nOutMax, the output will
remain at 0.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: analog output value.

bLight: digital output value. This is set if nOut is greater than 0.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.5.5 FB_Dimmer2SwitchEco

This function block is a memory-saving variant of FB_Dimmer2Switch() [} 41]. It does not have the special
functions "Set brightness value" and "Switch off memory function", which may not be required for many
applications. Moreover, the values nOutMin and nOutMax of the FB_Dimmer2Switch() [} 41] are set internally
here to 0 and 32767 respectively. This output span corresponds to the display range of an analog output
terminal. The tPLCCycle input is important. This time is used to calculate internally the amount by which the
nOut output must be increased per cycle - that saves additional time calculations.

Operation by means of the bSwitchDimmUp and bSwitchDimmDown inputs

The light is switched on or off by a short signal at the bSwitchDimmUp or bSwitchDimmDown inputs. Dimmer
mode will be activated if the signal remains for longer than tSwitchOverTime (typical recommended value:
200ms). The output signal goes to nOutMin or nOutMax. When the signal is once more removed, the output
signal being generated at that time is retained. Another pulse at one of the inputs will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a positive edge is applied to the bOn or bOff inputs. For
example, for global on/off functions. The output value is set to 0 when switching off.

Programming

TF801044 Version: 1.1

The memory function

In contrast to FB_Dimmer2Switch() [} 41], where the memory function can be activated or deactivated via the
input bMemoryModeOn , the memory function is always active in this memory-saving version. This means
that the last-set value is adopted as the brightness value when switching on. It is irrelevant, in this case,
whether the light it has been switched on by means of the bOn input or one of the bSwitchDimmUp or
bSwitchDimmDown inputs.

Comment on the tSwitchOverTime parameter

If a duration of 0 is specified for the parameter tSwitchOverTime, the bSwitchDimmUp and
bSwitchDimmDown inputs can only be used to dim the light. Switching on and off is only possible with the
bOn and bOff inputs.

VAR_INPUT
bSwitchDimmUp : BOOL;
bSwitchDimmDown : BOOL;
bOn : BOOL;
bOff : BOOL;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tPLCCycle : TIME := t#10ms;

bSwitchDimmUp: Switches or dims the output Up.

bSwitchDimmDown: Switches or dims the output Down.

bOn: Switches the output to the last output value.

bOff: Switches the output to 0.

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the
bSwitchDimmUp and bSwitchDimmDown inputs.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

tPLCCycle: the set PLC cycle time.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: analog output value.

bLight: digital output value. This is set if nOut is greater than 0.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 45Version: 1.1

4.1.5.6 FB_Dimmer3Switch

The functionality of the function block corresponds to the function blocks FB_Dimmer1Switch() [} 37] and
FB_Dimmer2Switch() [} 41].

Operating by means of the bSwitchDimm input

The light is switched on or off by a short signal at the bSwitchDimm input. Dimmer mode will be activated if
the signal remains for longer than tSwitchOverTime (typical recommended value: 200 ms). The output signal
then cycles between nOutMin and nOutMax. In order to be able to set the maximum or minimum value more
easily, the output signal pauses at the level of the maximum and minimum values for the time given by
tCycleDelay. When the signal is once more removed, the output signal being generated at that time is
retained. Another pulse at the input will set the output to 0.

Operation by means of the bSwitchDimmUp and bSwitchDimmDown inputs

The light is switched on or off by a short signal at the bSwitchDimmUp or bSwitchDimmDown inputs. Dimmer
mode will be activated if the signal remains for longer than tSwitchOverTime (typical recommended value:
200ms). The output signal goes to nOutMin or nOutMax. When the signal is once more removed, the output
signal being generated at that time is retained. Another pulse at one of the inputs will set the output to 0.

Operation by means of the bOn and bOff inputs

The light is immediately switched on or off if a positive edge is applied to the bOn or bOff inputs. For
example, for global on/off functions. The output value is set to 0 when switching off. The switch-on behavior
can be affected by the memory function (see below).

Operation by means of the bSetDimmValue and nDimmValue inputs

If the value of nDimmValue changes, the signal will be passed through directly to the output. The significant
point here is that the value changes. The lighting is switched off by changing the value to 0. If there is a
positive edge at the bSetDimmValue input, the value of nDimmValue immediately appears at the output.
Immediate modification of the output can be suppressed by a static 1-signal at the bSetDimmValue input.
This makes it possible to apply a value to the nDimmValue input, but for this value only to be passed to the
output at the next positive edge of bSetDimmValue.
The bSetDimmValue and nDimmValue inputs can be used to implement a variety of lighting scenarios.
Direct setting of the output, by means of nDimmValue, can be used to achieve particular brightness levels.

Programming

TF801046 Version: 1.1

Either directly or by continuously changing the value. nDimmValue must have a value between nOutMin and
nOutMax. The value 0 is an exception. If the value is outside this range, the output value is limited to the
upper or lower limit, as appropriate.

The memory function

It is necessary to determine whether the memory function (bMemoryModeOn input) is active or not at switch-
on. If the memory function is active, then the last set value is placed at the output as soon as the lamp is
switched on. If the memory function is not active, then the value specified by the
nOnValueWithoutMemoryMode parameter is output. It is irrelevant, in this case, whether the light it has been
switched on by means of the bOn input or one of the bSwitchDimmUp or bSwitchDimmDown inputs. It
should be noted that the nOnValueWithoutMemoryMode parameter must lie between nOutMin and
nOutMax. If this is not the case, the output value is adjusted to the upper or lower limit, as appropriate.

Fast dimming up/down when switching on and off

Lighting is particularly pleasant if sudden changes are replaced by a slow change to the desired value. This
mode can be activated both for switching on and for switching off by means of the two inputs,
bDimmOnMode and bDimmOffMode. The tDimmOnTime and tDimmOffTime parameters specify the time
that will be taken by the switching processes. This value is always related to the minimum and maximum
possible output values (nOutMin and nOutMax). The bOn and bOff inputs are one way in which the switch
on/off commands may be given. Alternatively, a short pulse can be provided to either of the inputs
bSwitchDimmUp or bSwitchDimmDown. If the nDimmValue input is set to 0, the output is modified without
delay. The same is true if the output is set by a positive edge at the bSetDimmValue input.

Comments on the tSwitchOverTime and tDimmTime parameters

If a duration of 0 is specified for the tSwitchOverTime parameter, while a value of greater than 0 is specified
for tDimmTime, then the bSwitchDimmUp or bSwitchDimmDown inputs can only be used to dim the light.
Switching on and off is only possible with the bOn and bOff inputs.

If the tDimmTime parameter is 0, the bSwitchDimmUp or bSwitchDimmDown inputs can only be used to
switch the light on or off. In this case, the value of tSwitchOverTime is irrelevant.

VAR_INPUT
bSwitchDimm : BOOL;
bSwitchDimmUp : BOOL;
bSwitchDimmDown : BOOL;
bOn : BOOL;
bOff : BOOL;
bSetDimmValue : BOOL;
nDimmValue : UINT;
tSwitchOverTime : TIME := t#500ms;
tDimmTime : TIME := t#5s;
tCycleDelay : TIME := t#10ms;
bMemoryModeOn : BOOL := FALSE;
nOnValueWithoutMemoryMode : UINT := 20000;
bDimmOnMode : BOOL := FALSE;
tDimmOnTime : TIME := t#0s;
bDimmOffMode : BOOL := FALSE;
tDimmOffTime : TIME := t#0s;
nOutMin : UINT := 5000;
nOutMax : UINT := 32767;

bSwitchDimm: Switches or dims the output.

bSwitchDimmUp: Switches or dims the output Up.

bSwitchDimmDown: Switches or dims the output Down.

bOn: Switches the output to the last output value, or to the value specified by
nOnValueWithoutMemoryMode.

bOff: Switches the output to 0.

bSetDimmValue: Switches the output to the value nDimmValue.

nDimmValue: The value is immediately applied to the output when there is a change.

Programming

TF8010 47Version: 1.1

tSwitchOverTime: Time for switching between the light on/off and dimming functions for the
bSwitchDimmUp and bSwitchDimmDown inputs.

tDimmTime: Time required for dimming to go from its minimum value to its maximum value.

tCycleDelay: Delay time, if either the minimum or maximum value is reached.

bMemoryModeOn: Switches over to use the memory function, so that the previous value is written to the
output as soon as it is switched on.

nOnValueWithoutMemoryMode: Switch-on value if the memory function is not active.

bDimmOnMode: The output value is increased in steps when switching on.

tDimmOnTime: Time period during which the light level is increased when the light is switched on.
bDimmOnMode must be active.

bDimmOffMode: The output value is reduced in steps when switching off

tDimmOffTime: Time period during which the light is reduced when the light is switched off. bDimmOffMode
must be active.

nOutMin: Minimum output value.

nOutMax: Maximum output value. If the parameter nOutMin is not smaller than nOutMax, the output will
remain at 0.

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: analog output value.

bLight: digital output value. This is set if nOut is greater than 0.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.5.7 FB_Light

A positive edge at the bOn input sets the bLight output. The output is reset by a positive edge at the bOff
input. If a positive edge is presented to bToggle, the output is negated; i.e., if On it goes Off, and if Off it goes
On.

VAR_INPUT
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;

bOn: Switches the output on.

bOff: Switches the output off.

bToggle: Negates the state of the output.

Programming

TF801048 Version: 1.1

VAR_OUTPUT
bLight : BOOL;

bLight: The output is set with a positive edge at bOn .

Example 1:

In the following example a light is operated by two switches.

If either the bSwitchA or the bSwitchB button is pressed, then the state of the light, as represented by the
bLight output, is changed.

Example 2:

In the following example the bSwitchMasterOff switch is used to switch the bLampKitchen and
bLampGarage lights off together. This function can be used, for instance, for central control of an area of a
building.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 49Version: 1.1

4.1.5.8 FB_LightControl

Function block for daylight-dependent lighting control with up to 30 interpolation points.

At the core of this function block is an input/control value table consisting of 30 elements with threshold
switching. If the input value reaches the range of an interpolation point (arrControlTable[n].nActualValue-
arrControlTable[n].nSwitchRange/2 ... arrControlTable[n].nActualValue+arrControlTable[n].nSwitchRange/2),
the control value jumps to the corresponding function value arrControlTable[n].nSetpoint (see diagram).
Coupled to this is a ramp block that runs up the control value over the time tRampTime.
When switching on with a positive edge at bOn, however, the light is initially switched directly to the nearest
control value. Only then is the controller activated. While the control is active, "post-starting" can take place
at any time with a positive edge at bOn, thus directly controlling the light to the nearest control value. A
positive edge at bOff switches the light off directly.

The whole range of the table does not have to be used. The first table element (arrControlTable, see below)
for which the parameter nSwitchrange is 0 is considered the start of the unused area.

Programming

TF801050 Version: 1.1

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
nActualValue : UINT;
tRampTime : TIME := t#30s;
arrControlTable : ARRAY[1..30] OF ST_ControlTable;
nOptions : DWORD;

bEnable: The bOn and bOff inputs are active as long as this input is TRUE. A negative state deactivates the
inputs.

bOn: A rising edge directly switches nLightLevel to the nearest control value.

bOff: A rising edge directly switches nLightLevel to "0".

nActualValue: Current brightness.

tRampTime: Time period during which the brightness value is controlled to the next control value. (Preset
value: 30 s).

arrControlTable: Input value/control value table. arrControlTable[1] to arrControlTable[30] of type
ST_ControlTable [} 94].

nOptions: Reserved for future developments.

VAR_OUTPUT
bLight : BOOL;
bBusy : BOOL;
bControlActive : BOOL;
bError : BOOL;
nErrorId : UDINT;

bLight: This output is set as long as nLightLevel is greater than "0".

bBusy: This output is always active as long as the processing of a command (bOn, bOff, bToggle or ramp)
is active.

bControlActive: This output is active as long as the control is active.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. Is reset to FALSE by the execution of a command at
the inputs.

nErrorId: Contains the specific error code of the most recently executed command. Is reset to "0" by the
execution of a command at the inputs. See Error codes [} 93].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Output control value of the function block and reference to the light output value.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 51Version: 1.1

4.1.5.9 FB_Ramp

Function block for realizing a light-ramp.

A rising edge at input bOn switches the light to the maximum value (32767). A rising edge at input bOff
switches the light off again. Rising edges at the bToggle input invert the respective light state. A positive
edge at the bStart input allows the function block to dim the light from the current level to nEndLevel. The
time required for this is defined by tRampTime. All inputs are only active as long as bEnable is TRUE,
otherwise the function block is reset internally.

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;
bStart : BOOL;
nEndLevel : BYTE;
tRampTime : TIME := t#10s;
nOptions : DWORD;

bEnable: The bOn, bOff, bToggle and bStart inputs are active as long as this input is TRUE. A negative
state deactivates the inputs and resets the function block.

bOn: A rising edge directly switches nLightLevel to the maximum value (32767).

bOff: A rising edge directly switches nLightLevel to "0".

bToggle: Switches the light state between On (32767) and Off (0).

bStart: If a rising edge is applied to this input, the light is dimmed up or down from the current value to
nEndLevel. The time required for this is defined by tRampTime. The dimming procedure can be interrupted
at any time by bOn, bOff or bToggle.

nEndLevel: Target value of the dimming procedure.

tRampTime: Ramp time, see bStart. (Preset value: 10 seconds).

nOptions: Reserved for future developments.

VAR_OUTPUT
bLight : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

bLight: This output is set as long as nLightLevel is greater than 0.

bBusy: This output is always active as long as the processing of a command (bOn, bOff, bToggle or ramp)
is active.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. Is reset to FALSE by the execution of a command at
the inputs.

Programming

TF801052 Version: 1.1

nErrorId: Contains the command-specific error code of the most recently executed command. Is reset to "0"
by the execution of a command at the inputs. See Error codes [} 93].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Output control value of the function block and reference to the light output value. This value is
defined as In-Out variable because the function block reads and writes the light value.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.5.10 FB_Sequencer

Function block for realizing light sequences with up to 50 interpolation points.

At the core of this function block is a ramp that approaches individual brightness values defined in a table
within an adjustable time and then remains at this brightness value for a time that can also be defined. After
the dwell time the next value is then driven to. As already mentioned, the table arrSequenceTable consists of
50 entries with the values for nTargetValue (target value), tRampTime (time taken to reach the target value)
and tProlongTime (dwell time at the target value). It is not absolutely necessary to use all 50 values. A 0
entry of all 3 values marks the end of a sequence. Beyond that it is possible using the nStartIndex input to
have a light sequence begin at any desired place in the table. This allows several different light sequences to
be programmed even within the 50 entries, the sequences being separated from one another by 0 entry
elements:

Programming

TF8010 53Version: 1.1

Over the course of time sequence 1, for example, looks like the following (nStartIndex=1,
nOptions.bit0=TRUE, see below for explanation):

Programming

TF801054 Version: 1.1

In addition, the function block can be switched on and off "normally" (On: nLightLevel = 32767, Off:
nLightLevel = 0) or toggled between "On" and "Off" via the input bToggle. However, none of the command
inputs is active unless the bEnable input is TRUE. If it is reset to FALSE, no more commands are accepted
and the light value retains its current state – even from a ramp.

VAR_INPUT
bEnable : BOOL;
bOn : BOOL;
bOff : BOOL;
bToggle : BOOL;
bStart : BOOL;
nStartIndex : USINT;
arrSequenceTable : ARRAY[1..50] OF ST_SequenceTable;
nOptions : DWORD;

bEnable: The bOn, bOff, bToggle and bStart inputs are active as long as this input is TRUE. A negative
state deactivates the inputs and resets the function block.

bOn: A rising edge directly switches nLightLevel to the maximum value (32767).

bOff: A rising edge directly switches nLightLevel to "0".

bToggle: Switches the light state between On (32767) and Off (0).

bStart: A positive edge starts a light sequence from the beginning defined under nStartIndex.

nStartIndex: See bStart.

arrSequenceTable: Light value table with the corresponding ramp and dwell times (see ST_SequenceTable
[} 95]).

nOptions: Parameterization input. The setting (or non-setting) of the individual bits of this variable of the
type DWORD has the following effect:

Programming

TF8010 55Version: 1.1

Constant Description
OPTION_INFINITE_LOOP Following the expiry of a sequence, the function block automatically

continues at the point defined at nStartIndex. If this option is not set, the
sequence stops after it has elapsed. A new positive edge at bStart would
be necessary to restart a sequence.

VAR_OUTPUT
nActualIndex : USINT;
bLight : BOOL;
bSequenceActive : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrorId : UDINT;

nActualIndex: Reference to the current element in the sequence table. If a sequence has been completed
(bSequenceActive = FALSE, see below), this output goes to "0".

bLight: This output is set as long as nLightLevel is greater than "0".

bSequenceActive: On processing a sequence this output is set to TRUE.

bBusy: This output is always active as long as the processing of a command (bOn, bOff, bToggle or ramp)
is active.

bError: This output is switched to TRUE as soon as an error occurs during the execution of a command. The
command-specific error code is contained in nErrorId. Is reset to FALSE by the execution of a command at
the inputs.

nErrorId: Contains the specific error code of the most recently executed command. Is reset to "0" by the
execution of a command at the inputs. See Error codes [} 93].

VAR_IN_OUT
nLightLevel : UINT;

nLightLevel: Output control value of the function block and reference to the light output value.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.5.11 FB_StairwellDimmer

A rising edge at the input bSwitch sets the analog output nOut to the value nPresenceValue. A falling edge
on bSwitch starts or restarts a timer with the runtime tPresenceDuration. Following the expiry of this timer,
nOut is dimmed to the value nProlongValue over the time period tFadeOffDuration. This value is maintained
for the time period tProlongDuration. After that, nOut is set to 0. A positive edge at the input bOff switches
the output nOut to 0 immediately. The digital output value bLight is always set when nOut is greater than 0.

Programming

TF801056 Version: 1.1

VAR_INPUT
bSwitch : BOOL;
bOff : BOOL;
nPresenceValue : UINT := 32767;
nProlongValue : UINT := 10000;
tPresenceDuration : TIME := t#120s;
tFadeOffDuration : TIME := t#10s;
tProlongDuration : TIME := t#20s;

bSwitch: Upon a positive edge: nOut is set to nPresenceValue. Upon a negative edge: start of the presence
time (see diagram).

bOff: Switches nOut off immediately.

nPresenceValue: Value to which nOut should be set during the presence time. (Preset value: 32767).

nProlongValue: Value to which nOut should be set during the dwell time. (Preset value: 10000).

tPresenceDuration: Duration of the presence time in which nOut is set to nPresenceValue following a
falling edge on bSwitch. (Preset value: 120 seconds).

tFadeOffDuration: Duration over which nOut is faded down to the dwell time following the presence time.
(Preset value: 10 seconds).

tProlongDuration: Duration of the dwell time. (Preset value: 20 seconds).

VAR_OUTPUT
nOut : UINT;
bLight : BOOL;

nOut: Output of the momentary light value.

bLight: This output is set as long as nOut is greater than 0.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 57Version: 1.1

4.1.5.12 FB_StairwellLight

A positive edge at the bSwitch input sets the bLight output. The output is reset once the tLightDuration time
has elapsed. If a signal is presented again to the bSwitch input before this time has elapsed, the timer is
restarted. When tPreWarningStart has elapsed, the light is switched off (as a prewarning) for the period
tPreWarningDuration. If this prewarning is not to be given, the parameter tPreWarningStart must be set to 0.
A positive edge at the bOff input switches the output off immediately.

VAR_INPUT
bSwitch : BOOL;
bOff : BOOL;
tLightDuration : TIME := t#120s;
tPreWarningStart : TIME := t#110s;
tPreWarningDuration : TIME := t#500ms;

bSwitch: Switches the output on for the period of time given by tLightDuration.

bOff: Switches the output off.

tLightDuration: Period of time for which the output is set.

tPreWarningStart: Warning time.

tPreWarningDuration: Duration of the prewarning.

VAR_OUTPUT
bLight : BOOL;

bLight: The output is set for the duration of tLightDuration with a positive edge at bSwitch.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF801058 Version: 1.1

4.1.6 Scene management

4.1.6.1 FB_RoomOperation

Programming

TF8010 59Version: 1.1

Programming

TF801060 Version: 1.1

The function block FB_RoomOperation () is conceived for the management of lighting and blinds. Scenes
are called and dimmed in a state of rest. Lighting and blinds can be set and saved in the appropriate mode.
This function block is intended for use with the function blocks FB_ScenesLighting() [} 63],
FB_ScenesVenetianBlind() [} 66], FB_Dimmer1Switch() [} 37] and FB_VenetianBlindEx() [} 23].

Calling saved scenes:

A rising edge at the input bSwitch_A, bSwitch_B or bSwitch_1..14 causes a pulse to be output at the output
bInvokeScene_A, bInvokeScene_B or bInvokeScene_1..14.

Dimming saved scenes:

A scene is called and dimmed up by a signal that is applied to the input bSwitch_A, bSwitch_B or
bSwitch_1..14 for a time exceeding tCycleDelayDimmTime.

Setting blind and lighting values:

A signal at the input bSwitchLightingMode or bSwitchBlindingMode switches to the respective mode. The
control values are changed by the inputs bSwitch_1..14 via the outputs bSwitchLighting_1..14 or
bSwitchBlindUp / bSwitchBlindDown_1..7.

Saving the settings:

By means of setting the input bSwitchLightingMode or bSwitchBlindingMode and a signal at the input
bSwitch_A, bSwitch_B or bSwitch_1..14, a pulse is output at the output bSaveScene_A, bSaveScene_B or
bSaveScene_1..14. The values are saved in the function block FB_ScenesLighting() [} 63],
FB_ScenesVenetianBlind() [} 66].

VAR_INPUT
bSwitch_A : BOOL;
bSwitch_B : BOOL;
bSwitch_1 : BOOL;
bSwitch_2 : BOOL;
bSwitch_3 : BOOL;
bSwitch_4 : BOOL;
bSwitch_5 : BOOL;
bSwitch_6 : BOOL;
bSwitch_7 : BOOL;
bSwitch_8 : BOOL;
bSwitch_9 : BOOL;
bSwitch_10 : BOOL;
bSwitch_11 : BOOL;
bSwitch_12 : BOOL;
bSwitch_13 : BOOL;
bSwitch_14 : BOOL;
bSwitchLightingMode : BOOL;
bSwitchBlindingMode : BOOL;
bFeedbackLighting_1 : BOOL;
bFeedbackLighting_2 : BOOL;
bFeedbackLighting_3 : BOOL;
bFeedbackLighting_4 : BOOL;
bFeedbackLighting_5 : BOOL;
bFeedbackLighting_6 : BOOL;
bFeedbackLighting_7 : BOOL;
bFeedbackLighting_8 : BOOL;
bFeedbackLighting_9 : BOOL;
bFeedbackLighting_10 : BOOL;
bFeedbackLighting_11 : BOOL;
bFeedbackLighting_12 : BOOL;
bFeedbackLighting_13 : BOOL;
bFeedbackLighting_14 : BOOL;
nFeedbackLighting_1 : UINT;
nFeedbackLighting_2 : UINT;
nFeedbackLighting_3 : UINT;
nFeedbackLighting_4 : UINT;
nFeedbackLighting_5 : UINT;
nFeedbackLighting_6 : UINT;
nFeedbackLighting_7 : UINT;
nFeedbackLighting_8 : UINT;
nFeedbackLighting_9 : UINT;

Programming

TF8010 61Version: 1.1

nFeedbackLighting_10 : UINT;
nFeedbackLighting_11 : UINT;
nFeedbackLighting_12 : UINT;
nFeedbackLighting_13 : UINT;
nFeedbackLighting_14 : UINT;
nFeedbackBlind_1 : USINT;
nFeedbackBlind_2 : USINT;
nFeedbackBlind_3 : USINT;
nFeedbackBlind_4 : USINT;
nFeedbackBlind_5 : USINT;
nFeedbackBlind_6 : USINT;
nFeedbackBlind_7 : USINT;
tCycleDelayDimmTime : TIME := t#500ms;
tOperationTime : TIME := t#60s;

bSwitch_A, B: calls the saved Scene A or Scene B.

bSwitch_1..14: sets and calls the saved scenes.

bSwitchLightingMode: switches to the lighting mode.

bSwitchBlindingMode: switches to the blinding mode.

bFeedbackLighting_1..14: current status of the respective lamp. Return value from the dimmer function
block FB_Dimmer1Switch() [} 37].

nFeedbackLighting_1..14: current control value of the respective lamp. Return value from the dimmer
function block FB_Dimmer1Switch() [} 37].

nFeedbackBlind_1..7: current control value of the respective blind. Return value from the blind function
block FB_VenetianBlindEx() [} 23].

tCycleDelayDimmTime: switching time between dimming and calling a scene.

tOperationTime: if the blinding or lighting mode is active and no operation takes place, the mode is
automatically switched back to scene mode after the expiry of this time.

VAR_OUTPUT
bEnableLightingMode : BOOL;
bEnableBlindingMode : BOOL;
bSwitchLighting_1 : BOOL;
bSwitchLighting_2 : BOOL;
bSwitchLighting_3 : BOOL;
bSwitchLighting_4 : BOOL;
bSwitchLighting_5 : BOOL;
bSwitchLighting_6 : BOOL;
bSwitchLighting_7 : BOOL;
bSwitchLighting_8 : BOOL;
bSwitchLighting_9 : BOOL;
bSwitchLighting_10 : BOOL;
bSwitchLighting_11 : BOOL;
bSwitchLighting_12 : BOOL;
bSwitchLighting_13 : BOOL;
bSwitchLighting_14 : BOOL;
bSwitchBlindUp_1 : BOOL;
bSwitchBlindDown_1 : BOOL;
bSwitchBlindUp_2 : BOOL;
bSwitchBlindDown_2 : BOOL;
bSwitchBlindUp_3 : BOOL;
bSwitchBlindDown_3 : BOOL;
bSwitchBlindUp_4 : BOOL;
bSwitchBlindDown_4 : BOOL;
bSwitchBlindUp_5 : BOOL;
bSwitchBlindDown_5 : BOOL;
bSwitchBlindUp_6 : BOOL;
bSwitchBlindDown_6 : BOOL;
bSwitchBlindUp_7 : BOOL;
bSwitchBlindDown_7 : BOOL;
bInvokeScene_A : BOOL;
bInvokeScene_B : BOOL;
bInvokeScene_1 : BOOL;
bInvokeScene_2 : BOOL;
bInvokeScene_3 : BOOL;
bInvokeScene_4 : BOOL;
bInvokeScene_5 : BOOL;

Programming

TF801062 Version: 1.1

bInvokeScene_6 : BOOL;
bInvokeScene_7 : BOOL;
bInvokeScene_8 : BOOL;
bInvokeScene_9 : BOOL;
bInvokeScene_10 : BOOL;
bInvokeScene_11 : BOOL;
bInvokeScene_12 : BOOL;
bInvokeScene_13 : BOOL;
bInvokeScene_14 : BOOL;
bSaveScene_A : BOOL;
bSaveScene_B : BOOL;
bSaveScene_1 : BOOL;
bSaveScene_2 : BOOL;
bSaveScene_3 : BOOL;
bSaveScene_4 : BOOL;
bSaveScene_5 : BOOL;
bSaveScene_6 : BOOL;
bSaveScene_7 : BOOL;
bSaveScene_8 : BOOL;
bSaveScene_9 : BOOL;
bSaveScene_10 : BOOL;
bSaveScene_11 : BOOL;
bSaveScene_12 : BOOL;
bSaveScene_13 : BOOL;
bSaveScene_14 : BOOL;
bLEDSwitch_1 : BOOL;
bLEDSwitch_2 : BOOL;
bLEDSwitch_3 : BOOL;
bLEDSwitch_4 : BOOL;
bLEDSwitch_5 : BOOL;
bLEDSwitch_6 : BOOL;
bLEDSwitch_7 : BOOL;
bLEDSwitch_8 : BOOL;
bLEDSwitch_9 : BOOL;
bLEDSwitch_10 : BOOL;
bLEDSwitch_11 : BOOL;
bLEDSwitch_12 : BOOL;
bLEDSwitch_13 : BOOL;
bLEDSwitch_14 : BOOL;
bLEDLightingMode : BOOL;
bLEDBlindingMode : BOOL;

bEnableLightingMode: enables the memory function block FB_ScenesLighting() [} 63].

bEnableBlindingMode: enables the memory function block FB_ScenesVenetianBlind() [} 66].

bSwitchLighting_1..14: output for operating the dimmer function block FB_Dimmer1Switch() [} 37] via the
input bSwitchDimm.

bSwitchBlindUp_1..7: output for operating the blind function block FB_VenetianBlindEx() [} 23] via the input
bSwitchOverUp.

bSwitchBlindDown_1..7: output for operating the blind function block FB_VenetianBlindEx() [} 23] via the
input bSwitchOverDown.

bInvokeScene_A, B, 1..14: output signal for loading a scene. Is passed on to the function blocks
FB_ScenesLighting() [} 63] und FB_ScenesVenetianBlind() [} 66].

bSaveScene_A, B, 1..14: output signal for saving a scene. Is passed on to the function blocks
FB_ScenesLighting() [} 63] und FB_ScenesVenetianBlind() [} 66].

bLEDSwitch_1..14: these outputs indicate the status of the respective lighting (on/off) or shading
(0%/100%). These outputs are always FALSE in scene mode.

bLEDLightingMode: this output is TRUE if lighting mode is active.

bLEDBlindingMode: this output is TRUE if blinding mode is active.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 63Version: 1.1

4.1.6.2 FB_ScenesLighting

Programming

TF801064 Version: 1.1

This function block is intended for the management of lighting scenes. The function block is enabled via the
bEnable input. The loading of the saved scenes is started by a positive edge at the bEnable input. The input
must remain TRUE until the operation is completed. The values of the scenes are saved non-volatile in the
TwinCAT Boot directory as a *.bin file. The last data status is saved in a *.bak file as a backup.

Save scene

The values of the inputs nActualValueLighting_1..14 are saved in the respective scene by a rising edge at
the input bSaveScene_1...16.

Load scenes

The saved values are output at the output nDimmValue_1..14 by a rising edge at the input
bInvokeScene_1..16. Furthermore, a positive edge is generated at output bSetDimmValue_1..14 for a PLC
cycle.

VAR_INPUT
bEnable : BOOL;
bInvokeScene_1 : BOOL;
bInvokeScene_2 : BOOL;
bInvokeScene_3 : BOOL;
bInvokeScene_4 : BOOL;
bInvokeScene_5 : BOOL;
bInvokeScene_6 : BOOL;
bInvokeScene_7 : BOOL;
bInvokeScene_8 : BOOL;
bInvokeScene_9 : BOOL;
bInvokeScene_10 : BOOL;
bInvokeScene_11 : BOOL;
bInvokeScene_12 : BOOL;
bInvokeScene_13 : BOOL;
bInvokeScene_14 : BOOL;
bInvokeScene_15 : BOOL;
bInvokeScene_16 : BOOL;
bSaveScene_1 : BOOL;
bSaveScene_2 : BOOL;
bSaveScene_3 : BOOL;
bSaveScene_4 : BOOL;
bSaveScene_5 : BOOL;
bSaveScene_6 : BOOL;
bSaveScene_7 : BOOL;
bSaveScene_8 : BOOL;
bSaveScene_9 : BOOL;
bSaveScene_10 : BOOL;
bSaveScene_11 : BOOL;
bSaveScene_12 : BOOL;
bSaveScene_13 : BOOL;
bSaveScene_14 : BOOL;
bSaveScene_15 : BOOL;
bSaveScene_16 : BOOL;
nActualValueLighting_1 : UINT;
nActualValueLighting_2 : UINT;
nActualValueLighting_3 : UINT;
nActualValueLighting_4 : UINT;
nActualValueLighting_5 : UINT;
nActualValueLighting_6 : UINT;
nActualValueLighting_7 : UINT;
nActualValueLighting_8 : UINT;
nActualValueLighting_9 : UINT;
nActualValueLighting_10 : UINT;
nActualValueLighting_11 : UINT;
nActualValueLighting_12 : UINT;
nActualValueLighting_13 : UINT;
nActualValueLighting_14 : UINT;
sFile : STRING;
nOptions : UDINT;

bEnable: enables the function block.

bInvokeScene_1..16: calls the respective scene.

bSaveScene_1..16: saves the current analog value nActualValueLighting_1..14 in the respective scene.

Programming

TF8010 65Version: 1.1

nActualValueLighting_1..14: current control value of the respective lamp. Return value from the dimmer
function block FB_Dimmer1Switch() [} 37].

sFile: file name (without path and file extension) for saving the scenes. The file name must be unique in the
entire project. If several instances of the function blocks FB_ScenesLighting() or FB_ScenesVenetianBlind()
[} 66] are created, then each instance must use a different file name. The file is always saved to the
TwinCAT Boot directory and is given the extension .bin. Example: 'ControlPanelA'.

nOptions: Reserved for future developments.

VAR_OUTPUT
bSetDimmValue_1 : BOOL;
nDimmValue_1 : UINT;
bSetDimmValue_2 : BOOL;
nDimmValue_2 : UINT;
bSetDimmValue_3 : BOOL;
nDimmValue_3 : UINT;
bSetDimmValue_4 : BOOL;
nDimmValue_4 : UINT;
bSetDimmValue_5 : BOOL;
nDimmValue_5 : UINT;
bSetDimmValue_6 : BOOL;
nDimmValue_6 : UINT;
bSetDimmValue_7 : BOOL;
nDimmValue_7 : UINT;
bSetDimmValue_8 : BOOL;
nDimmValue_8 : UINT;
bSetDimmValue_9 : BOOL;
nDimmValue_9 : UINT;
bSetDimmValue_10 : BOOL;
nDimmValue_10 : UINT;
bSetDimmValue_11 : BOOL;
nDimmValue_11 : UINT;
bSetDimmValue_12 : BOOL;
nDimmValue_12 : UINT;
bSetDimmValue_13 : BOOL;
nDimmValue_13 : UINT;
bSetDimmValue_14 : BOOL;
nDimmValue_14 : UINT;
bInit : BOOL;
bError : BOOL;
nErrorId : UDINT;

bSetDimmValue_1..14: output with the edge for the input bSetDimmValue of the function block
FB_Dimmer1Switch() [} 37].

nDimmValue_1..14: Output with the value for the input nDimmValue of the function block
FB_Dimmer1Switch() [} 37].

bInit: this output goes TRUE as soon as the initialization of the function block is complete.

bError: this output is set to TRUE as soon as an error is detected during execution. The error code is
contained in nErrorId.

nErrorId: contains the error code as soon as bError goes TRUE. See Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF801066 Version: 1.1

4.1.6.3 FB_ScenesVenetianBlind

This function block is intended for the management of blind scenes. The function block is enabled via the
bEnable input. The loading of the saved scenes is started by a positive edge at the bEnable input. The input
must remain TRUE until the operation is completed. The values of the scenes are saved non-volatile in the
TwinCAT Boot directory as a *.bin file. The last data status is saved in a *.bak file as a backup.

Programming

TF8010 67Version: 1.1

Save scene

The values of the inputs nActualValueBlinding_1..7 are saved in the respective scene by a rising edge at the
input bSaveScene_1...16.

Load scenes

The saved values are output at the output nBlindValue_1..7 by a rising edge at the input
bInvokeScene_1..16. Furthermore, a positive edge is generated at the output bSetBlindValue_1..7 for one
PLC cycle.

VAR_INPUT
bEnable : BOOL;
bInvokeScene_1 : BOOL;
bInvokeScene_2 : BOOL;
bInvokeScene_4 : BOOL;
bInvokeScene_5 : BOOL;
bInvokeScene_6 : BOOL;
bInvokeScene_7 : BOOL;
bInvokeScene_8 : BOOL;
bInvokeScene_9 : BOOL;
bInvokeScene_10 : BOOL;
bInvokeScene_11 : BOOL;
bInvokeScene_12 : BOOL;
bInvokeScene_13 : BOOL;
bInvokeScene_14 : BOOL;
bInvokeScene_15 : BOOL;
bInvokeScene_16 : BOOL;
bSaveScene_1 : BOOL;
bSaveScene_2 : BOOL;
bSaveScene_3 : BOOL;
bSaveScene_4 : BOOL;
bSaveScene_5 : BOOL;
bSaveScene_6 : BOOL;
bSaveScene_7 : BOOL;
bSaveScene_8 : BOOL;
bSaveScene_9 : BOOL;
bSaveScene_10 : BOOL;
bSaveScene_11 : BOOL;
bSaveScene_12 : BOOL;
bSaveScene_13 : BOOL;
bSaveScene_14 : BOOL;
bSaveScene_15 : BOOL;
bSaveScene_16 : BOOL;
nActualValueBlinding_1 : UINT;
nActualValueBlinding_2 : USINT;
nActualValueBlinding_3 : USINT;
nActualValueBlinding_4 : USINT;
nActualValueBlinding_5 : USINT;
nActualValueBlinding_6 : USINT;
nActualValueBlinding_7 : USINT;
sFile : STRING;
nOptions : DWORD;

bEnable: enables the function block.

bInvokeScene_1..16: calls the respective scene.

bSaveScene_1..16: saves the current analog value nActualValueBlinding_1..14 in the respective scene.

nActualValueBlinding_1..7: current control value of the respective blind. Return value from the blind
function block FB_VenetianBlindEx() [} 23].

sFile: file name (without path and file extension) for saving the scenes. The file name must be unique in the
entire project. If several instances of the function blocks FB_ScenesLighting() [} 63] or
FB_ScenesVenetianBlind() are created, then each instance must use a different file name. The file is always
saved to the TwinCAT Boot directory and is given the extension .bin. Example: 'ControlPanelA'.

nOptions: Reserved for future developments.

Programming

TF801068 Version: 1.1

VAR_OUTPUT
bSetBlindValue_1 : BOOL;
nBlindValue_1 : USINT;
bSetBlindValue_2 : BOOL;
nBlindValue_2 : USINT;
bSetBlindValue_3 : BOOL;
nBlindValue_3 : USINT;
bSetBlindValue_4 : BOOL;
nBlindValue_4 : USINT;
bSetBlindValue_5 : BOOL;
nBlindValue_5 : USINT;
bSetBlindValue_6 : BOOL;
nBlindValue_6 : USINT;
bSetBlindValue_7 : BOOL;
nBlindValue_7 : USINT;
bInit : BOOL;
bError : BOOL;
nErrorId : UDINT;

bSetBlindValue_1..7: output with the edge for the input bPosition of the function block FB_VenetianBlindEx()
[} 23].

nBlindValue_1..7: output with the value for the input nSetPosition of the function block FB_VenetianBlindEx()
[} 23].

bInit: this output goes TRUE as soon as the initialization of the function block is complete.

bError: this output is set to TRUE as soon as an error is detected during execution. The error code is
contained in nErrorId.

nErrorId: contains the error code as soon as bError goes TRUE. See Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.7 Signal processing

4.1.7.1 FB_ShortLongClick

If the bSwitch input is longer than the tSwitchTime, the bLongClick output is set for one PLC cycle.
Otherwise, the bShortClick output is set.

VAR_INPUT
bSwitch : BOOL;
tSwitchTime : TIME := t#50ms;

bSwitch: Input signal.

tSwitchTime: Duration above which the input signal is to be interpreted as a long button press.

VAR_OUTPUT
bShortClick : BOOL;
bLongClick : BOOL;

bShortClick: Indicates a short push of the button.

Programming

TF8010 69Version: 1.1

bLongClick: Indicates a long push of the button.

Example

In the following example, two push buttons are used to control two different lamps. A switch is assigned to
each lamp. If a button is pressed for longer than 500 ms, both lamps are switched off.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.7.2 FB_SignallingContact

The two inputs tDelayOnTime and tDelayOffTime allow slow operation and slow release delays to be set. If a
message signal is to be acknowledged before this time can be ended, this is done by means of the
bQuitSignal input. The state of the signaling contact is communicated to the function block via the bContact
input.

The state of the message signal is indicated by the nSignalState output. A message signal can adopt one of
altogether 6 different states. Corresponding constants are defined in the library:

Constant Description
TCSIGNAL_INVALID The message signal still does not have a defined state.
TCSIGNAL_SIGNALED The message signal is active.
TCSIGNAL_RESET The message signal has been reset.
TCSIGNAL_CONFIRMED The message signal is confirmed, but has not yet been reset.
TCSIGNAL_SIGNALCON The message signal is active and confirmed.
TCSIGNAL_RESETCON The message signal is confirmed and reset.

VAR_INPUT
tDelayOnTime : TIME := t#100ms;
tDelayOffTime : TIME := t#100ms;
bQuitSignal : BOOL;
bContact : BOOL;

tDelayOnTime: Delay before setting the message signal.

Programming

TF801070 Version: 1.1

tDelayOffTime: Delay before resetting the message signal.

bQuitSignal: Input to acknowledge message signal.

bContact: Input for the signaling contact.

VAR_OUTPUT
nSignalState : WORD;

nSignalState: Message status.

Examples

A message signal requiring acknowledgement is implemented in the following example. The variable
bGateAlert represents the state of the message signal. If the output nSignalState has the value
TCSIGNAL_SIGNALED or TCSIGNAL_RESET, the message is active. A positive edge at the bQuitSignal
input acknowledges the message signal.

The following example illustrates the simplest case. A message signal not requiring acknowledgement.

The slow release delay allows the message signal to remain active for a certain time. The slow operation
delay can be used, for example, to suppress contact bounce.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.7.3 FB_SingleDoubleClick

If the input signal is presented twice within the time tSwitchTime, the bDoubleClick output is set for one PLC
cycle. Otherwise, the bSingleClick output is set.

Programming

TF8010 71Version: 1.1

VAR_INPUT
bSwitch : BOOL;
tSwitchTime : TIME := t#500ms;

bSwitch: Input signal.

tSwitchTime: Duration above which the input signal is to be interpreted as a double button press.

VAR_OUTPUT
bSingleClick : BOOL;
bDoublelick : BOOL;

bSingleClick: Indicates a single push of the button.

bDoublelick: Indicates a double push of the button.

Example

In the following example, two switches are used to control two different lamps. A switch is assigned to each
lamp. If a switch is pressed twice in rapid succession, both lamps are switched off.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.7.4 FB_ThresholdSwitch

If the input signal exceeds the limit value fUpperLimit for the duration specified by tUpperLimitDelay, the
output bCrossUpperLimit is set for one PLC cycle. The bSwitchingSignal output is also set. This remains set
until the input signal passes below the value of fLowerLimit for the duration specified by tLowerLimitDelay. In
this case, the output fCrossLowerLimit is set for one PLC cycle.

VAR_INPUT
fSignal : LREAL;
fLowerLimit : LREAL := 16000;
fUpperLimit : LREAL := 17000;
tLowerLimitDelay : TIME := t#100ms;
tUpperLimitDelay : TIME := t#100ms;

fSignal: Input signal.

Programming

TF801072 Version: 1.1

fLowerLimit: Lower limit value.

fUpperLimit: Upper limit value.

tLowerLimitDelay: Switching delay when passing beyond the lower limit.

tUpperLimitDelay: Switching delay when passing beyond the upper limit.

VAR_OUTPUT
bSwitchingSignal : BOOL;
bCrossLowerLimit : BOOL;
bCrossUpperLimit : BOOL;

bSwitchingSignal: State depends on bCrossLowerLimit and bCrossUpperLimit.

bCrossLowerLimit: Becomes TRUE for a cycle if fLowerLimit has fallen below the time tLowerLimitDelay.
At the same time bSwitchingSignal becomes FALSE.

bCrossUpperLimit: Becomes TRUE for a cycle if fUpperLimit is exceeded for the time tUpperLimitDelay. At
the same time bSwitchingSignal becomes TRUE.

Example

In the following example, the two lamps can each be controlled with one switch. The two lamps are
automatically switched in response to the outside brightness and the threshold switch. The lamps are
switched on if the outside brightness is less than 1000 lux for 15 minutes. The lamps are switched off as
soon as the brightness is greater than 2000 lux for more than 15 minutes.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.8 Timer functions
The timer function blocks are intended to trigger actions on certain days in the year/ month/ week. The action
can be triggered via a start event or a start time and terminated via an end event, end time or duration. The
following combinations are possible:

Programming

TF8010 73Version: 1.1

The grey-blue fields indicate the timer type. The day is determined by the periodicity (red fields) and further
discretization (orange). A common feature of all function blocks is that they have the same start and end
criteria (green). The start criterion relates to the selected day, the end criterion depends on the starting point.
For each instance of a function block only one start and end criterion can be defined. To trigger several
actions on the same day several instances of the function block are required.

Time overlaps

Time overlaps of two consecutive switch-on and switch-off criteria may occur in the same instance of the
function block if the switching duration is not limited to less than 1 day. In this case a start event may be
followed by another start event before the end of the preceding period. The following overlap scenarios are
possible in the situation described above:

Starttime / Endtime (type TOD, TOD)

No overlap possible since for Starttime<Endtime the start and end point are on same day, and for
Starttime>=Endtime the end point is assumed to be on the next day. This means that the duration is this
limited to less than 1 day.

Starttime / Duration (type TOD, TIME)

Overlap is possible, since the duration is freely selectable and the TIME variable type can be up to 50 days.
It would therefore be possible to trigger an action with a duration of 3 days on a daily basis. The action would
never be completed since it would be constantly restarted.

Starttime / End event (type TOD, BOOL)

Overlap possible, since the end event is variable and cannot occur before the next start time.

Start event / Endtime (type BOOL, TOD)

Programming

TF801074 Version: 1.1

Overlap may be possible. The end time is calculated when the start event occurs. If Starttime<Endtime the
end time is on the same day. In this case no overlap is possible. On the other hand, if Starttime>=Endtime
the end point is on the next day. An overlap occurs if the start is triggered on this day before the end of the
previous action has been reached.

Start event / Duration (type BOOL, TIME)

Overlap is possible, since the duration is freely selectable and the TIME variable type can be up to 50 days.
It would therefore be possible to trigger an action with a duration of 3 days on a daily basis. The action would
never be completed since it would be constantly restarted.

Start event / End event (type BOOL, BOOL)

Overlap possible, since the end event is variable and cannot occur before the next start event.

An overlap means that the control output bOut for the respective function block does not change to FALSE.
Instead, the system waits for the next period end. However, since the intention may also be that the function
blocks merely trigger an action, the edge output bTriggerOn is also linked to the function blocks.

Further documentation

The following table contains an overview of the documentation for the individual function blocks:

FB_DailyScheduler()
[} 74]

FB_WeeklySched-
uler() [} 75]

FB_MonthlySched-
uler1() [} 77]

FB_MonthlySched-
uler2() [} 78]

FB_YearlySched-
uler() [} 79]

switches every n-th
day

switches every n-th
week on certain
weekdays (multiple
selection possible)

switches in certain
months (multiple
selection possible)
on a certain day of
the week

switches in certain
months (multiple
selection possible)
on a certain day of
the month

switches on a
certain day of the
year

Sample program

A sample program [} 80] uses a daily switching function block (FB_DailyScheduler) to illustrate how the
function blocks have to be parameterized.

4.1.8.1 FB_DailyScheduler

Function block for triggering actions every n-th day of the year.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
uiPeriodicity : UINT;
uiBegin : UINT;
eStartEnd : E_StartEnd;
stStartEnd : ST_StartEnd;
stSystemtime : TIMESTRUCT;

uiPeriodicity: Periodicity or interval. May be within the range 1...365.

Programming

TF8010 75Version: 1.1

uiBegin: Starting value for the day counter. May be within the range 1...365.

Example1:
uiPeriodicity = 5,
uiBegin = 2: Switching events on 2 Jan., 7 Jan. 12 Jan. etc.

Example2:
uiPeriodicity = 3,
uiBegin = 1: Switching events on 1 Jan., 4 Jan. 7 Jan. etc.

eStartEnd: Selection of the start/end definition (see E_StartEnd [} 93]).

stStartEnd: Structure with the parameters defining the start and end. Unused variables, for example the
duration for the selection of start/end time, are ignored internally (see ST_StartEnd [} 95]).

stSystemtime: current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: Control output that is switched on or off by the start and end event.

bTriggerOn: Trigger output for switch-on events. This output is intended for logging switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps in the overview.

bNoEventNextYear: No day matching the parameterization was found within the next 366 days.

bError: This output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: Contains the command-specific error code. Reset to 0 once the parameterization is correct. See
Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.8.2 FB_WeeklyScheduler

Function block for triggering actions on certain weekdays in each n-th week of the year.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

Programming

TF801076 Version: 1.1

VAR_INPUT
uiPeriodicity : UINT;
uiBegin : UINT;
arrActiveWeekday : ARRAY[0..6] OF BOOL;
eStartEnd : E_StartEnd;
stStartEnd : ST_StartEnd;
stSystemtime : TIMESTRUCT;

uiPeriodicity: Periodicity or interval. May be within the range 1...52.

uiBegin: Starting value for the week. May be within the range 1...52.

Example1:
uiPeriodicity = 5,
uiBegin = 2: Switching events in week 2, week 7, week 12 etc.

Example 2:
uiPeriodicity = 3,

uiBegin = 1: Switching events in week 1, week 4, week 7 etc.

arrActiveWeekday: Day of the week on which switching is to take place - arrActiveWeekday[0] => Sunday ..
arrActiveWeekday[6] => Saturday. Multiple selections are possible.

eStartEnd: Selection of the start/end definition (see E_StartEnd [} 93]).

stStartEnd: Structure with the parameters defining the start and end. Unused variables, for example the
duration for the selection of start/end time, are ignored internally (see ST_StartEnd [} 95]).

stSystemtime: Current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: Control output that is switched on or off by the start and end event.

bTriggerOn: Trigger output for switch-on events. This output is intended for logging switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps in the overview.

bNoEventNextYear: No day matching the parameterization was found within the next 366 days.

bError: This output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: Contains the command-specific error code. Reset to 0 once the parameterization is correct. See
Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 77Version: 1.1

4.1.8.3 FB_MonthlyScheduler1

Function block for triggering actions on a certain day of the week in certain months.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
arrActiveMonth : ARRAY[1..12] OF BOOL;
uiActiveWeekday : UINT;
eStartEnd : E_StartEnd;
stStartEnd : ST_StartEnd;
stSystemtime : TIMESTRUCT;

arrActiveMonth: Month in which an action is to be triggered - arrActiveMonth[1]=>January ..
arrActiveMonth[12]=>December. Multiple selections are possible.

uiActiveWeekday: Day of the week on which an action is to be triggered in the selected months.
0=Sunday ... 6=Saturday. Multiple selections are not possible; the maximum value is 6

eStartEnd: Selection of the start/end definition (see E_StartEnd [} 93]).

stStartEnd: Structure with the parameters defining the start and end. Unused variables, for example the
duration for the selection of start/end time, are ignored internally (see ST_StartEnd [} 95]).

stSystemtime: Current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: Control output that is switched on or off by the start and end event.

bTriggerOn: Trigger output for switch-on events. This output is intended for logging switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps in the overview.

bNoEventNextYear: No day matching the parameterization was found within the next 366 days.

bError: This output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: Contains the command-specific error code. Reset to 0 once the parameterization is correct. See
Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF801078 Version: 1.1

4.1.8.4 FB_MonthlyScheduler2

Function block for triggering actions on a certain day in certain months.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
arrActiveMonth : ARRAY[1..12] OF BOOL;
uiActiveWeekday : UINT;
eStartEnd : E_StartEnd;
stStartEnd : ST_StartEnd;
stSystemtime : TIMESTRUCT;

arrActiveMonth: Month in which an action is to be triggered - arrActiveMonth[1]=>January ...
arrActiveMonth[12]=>December. Multiple selections are possible.

uiActiveDay: Day of the month on which an action is to be triggered. Multiple selections are not possible.

eStartEnd: Selection of the start/end definition (see E_StartEnd [} 93]).

stStartEnd: Structure with the parameters defining the start and end. Unused variables, for example the
duration for the selection of start/end time, are ignored internally (see ST_StartEnd [} 95]).

stSystemtime: Current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: Control output that is switched on or off by the start and end event.

bTriggerOn: Trigger output for switch-on events. This output is intended for logging switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps in the overview.

bNoEventNextYear: No day matching the parameterization was found within the next 366 days.

bError: This output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: Contains the command-specific error code. Reset to 0 once the parameterization is correct. See
Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 79Version: 1.1

4.1.8.5 FB_YearlyScheduler

Function block for triggering actions on a certain day of the year.

The function block triggers switching when the switching time is passed. Subsequent modification of
the switching events or the time is therefore not permitted.

VAR_INPUT
uiMonth : UINT;
uiDay : UINT;
eStartEnd : E_StartEnd;
stStartEnd : ST_StartEnd;
stSystemtime : TIMESTRUCT;

uiMonth: Month in which an action is to be triggered. Multiple selections are not possible.

uiDay: Day on which an action is to be triggered. Multiple selections are not possible.

eStartEnd: Selection of the start/end definition (see E_StartEnd [} 93]).

stStartEnd: Structure with the parameters defining the start and end. Unused variables, for example the
duration for the selection of start/end time, are ignored internally (see ST_StartEnd [} 95]).

stSystemtime: Current time in TIMESTRUCT format. It is important to count every second.

VAR_OUTPUT
bOut : BOOL;
bTriggerOn : BOOL;
bNoEventNextYear : BOOL;
bError : BOOL;
nErrorId : UDINT;

bOut: Control output that is switched on or off by the start and end event.

bTriggerOn: Trigger output for switch-on events. This output is intended for logging switch-on events. If two
switch-on events occur consecutively they would not be detected via the control output bOut, since this
output would remain TRUE. See also time overlaps in the overview.

bNoEventNextYear: No day matching the parameterization was found within the next 366 days.

bError: This output is set to TRUE if the parameterization is faulty. The command-specific error code is
contained in nErrorId. Reset to FALSE once the parameterization is correct.

nErrorId: Contains the command-specific error code. Reset to 0 once the parameterization is correct. See
Error codes [} 93].

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF801080 Version: 1.1

4.1.8.6 Timer program example

The following program example uses a day timer to illustrate how the function blocks should be
parameterized, particularly with regard to the inputs eStartEnd, stStartEnd and stSystemTime.

We recommend using the function block NT_GetTime, which is available in the library Tc2_Utilities, for
reading the system time in PC- and CX-based systems. A program for reading might look as follows:

It provides a timebase for parameterizing the scheduler function blocks with regard to the time input
stSystemTime. The enumerator matching the required behavior is created at input eStartEnd:

eSTARTTIME_ENDTIME Start criterion: Time - End criterion: Time
eSTARTTIME_DURATION Start criterion: Time - End criterion: Duration
eSTARTTIME_ENDEVENT Start criterion: Time - End criterion: Event (boolean input)
eSTARTEVENT_ENDTIME Start criterion: Event (boolean input) - End criterion: Time
eSTARTEVENT_DURATION Start criterion: Event (boolean input) - End criterion: Duration
eSTARTEVENT_ENDEVENT Start criterion: Event (boolean input) - End criterion: Event (boolean input)

For the input stStartEnd a structure variable of the same type has to be declared that is referred to in the
example as stStartEnd. The program then describes the subvariables of this structure, which are important
for the function type. For the example shown, these are todStartTime and tDuration. All other variables are
not read and therefore do not have to be described.

Programming

TF8010 81Version: 1.1

Both programs have to be called in the MAIN function block. The program part P_SchedulerExample may
only be called once the program part P_SystemTime supplies valid data, i.e. once P_SystemTimeValid is
TRUE. The reason for this protective logic is that reading the time takes several cycles which means that the
time when the program starts is invalid and must not be used.

If the program starts on 1 January, the sequences is as follows:

The days on which actions are triggered start with the 2nd of the year (uiBegin:=2). The process is repeated
every three days (uiPeriodicity:=3). The switch-on time is 15:00 (stStartEnd.todStartTime:=tod#15:00:00) and
the switching duration is 6 hours (stStartEnd.tDuration:=t#6h).

Programming

TF801082 Version: 1.1

4.1.8.7 FB_WeeklyTimeSwitch

The two parameters tSwitchOnTime and tSwitchOffTime define a time period during which the output
bOutput is to be active. If the timer is only to apply on certain days of the week, this can be set via the inputs
bSunday, bMonday, ..., bSaturday. Several time channels can be switched by creating several instances of
the function block. Each instance is responsible for one time channel.

VAR_INPUT
bEnable : BOOL;
tCurrentDateTime : DATE_AND_TIME;
tSwitchOnTime : TOD;
tSwitchOffTime : TOD;
bSunday : BOOL;
bMonday : BOOL;
bTuesday : BOOL;
bWednesday : BOOL;
bThursday : BOOL;
bFriday : BOOL;
bSaturday : BOOL;

bEnable: Function block enable.

tCurrentDateTime: current date and time.

tSwitchOnTime: switch-on time.

tSwitchOffTime: switch-off time.

bSunday: consider timer on Sundays.

bMonday: consider timer on Mondays.

bTuesday: consider timer on Tuesdays.

bWednesday: consider timer on Wednesdays.

bThursday: consider timer on Thursdays.

bFriday: consider timer on Fridays.

bSaturday: consider timer on Saturdays.

VAR_OUTPUT
bOutput : BOOL;
bEdgeOn : BOOL;
bEdgeOff : BOOL;

bOutput: output becomes TRUE if the current time is between the switch-on time and the switch-off time.

bEdgeOn: the output is set to TRUE for one PLC cycle when the time channel becomes active.

Programming

TF8010 83Version: 1.1

bEdgeOff: the output is set to TRUE for one PLC cycle when the time channel becomes deactivated.

Example

In the following example, the blinds are to be raised at 6.30 a.m. at weekends and lowered at 7.00 p.m. The
two timer outputs bEdgeOn and bEdgeOff are linked to the inputs bUp and bDown of the blind function
block. The pulses from the outputs then trigger raising or lowering of the blinds at the specified time.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.8.8 FB_CalcSunPosition

Calculation of sun position based on the date, time, longitude and latitude.

Description

The position of the sun for a given point in time can be calculated according to common methods with a
defined accuracy. For applications with moderate requirements, the present function block is sufficient. As
the basis for this, the SUNAE algorithm was used, which represents a favorable compromise between
accuracy and computing effort.

The position of the sun at a fixed observation point is normally determined by specifying two angles. One
angle indicates the height above the horizon, where 0° means that the sun is in the horizontal plane of the
observation site and 90° means that the sun is directly over the observer's head. The other angle indicates
the direction in which the sun is standing. The SUNAE algorithm is used to distinguish whether the observer
is standing on the northern hemisphere (longitude > 0 degrees) or on the southern hemisphere (longitude <

Programming

TF801084 Version: 1.1

0 degrees) of the earth. If the observation point is in the northern hemisphere, a value of 0° is assigned for
the northern direction of the sun and then moves clockwise around the compass, i.e. 90° is east, 180° is
south, 270° west, etc. If the observation point is in the southern hemisphere, 0° corresponds to the southern
direction and moves counterclockwise, i.e. 90° is east, 180° is north, 270° is west, etc.

In specifying the time, the time according to Greenwich Mean Time (GMT) must be given.

The latitude is specified as the distance of a place on the surface of the earth from the equator to the north or
to the south in degrees. The latitude can assume a value from 0° (at the equator) to ±90° (at the poles). A
positive sign thereby indicates a northern direction and a negative sign a southern direction. The longitude is
an angle that can assume values up to ±180° starting from the prime meridian 0° (an artificially determined
North-South line). A positive sign indicates a longitude in an eastern direction and a negative sign in a
western direction. Examples:

Location Longitude Latitude
Sydney, Australia 151.2° -33.9°
New York, USA 74.0° 40.7°
London, England -0.1° 51.5°
Moscow, Russia 37.6° 55.7°
Beijing, China 116.3° 39.9°
Dubai, United Arab Emirates 55.3° 25.4°
Rio de Janeiro, Brazil -43.2° -22.9°
Hawaii, USA -155.8° 20.2°
Verl, Germany 8.5° 51.9°

If the function block FB_CalcSunPosition() returns a negative value for the height of the sun (fSunElevation),
then the sun is not visible. This can be used to determine sunrise and sunset.

VAR_INPUT
fDegreeOfLongitude : LREAL := 8.5;
fDegreeOfLatitude : LREAL := 51.9;
dtGMT : TIMESTRUCT;

fDegreeOfLongitude: Longitude in degrees.

fDegreeofLatitude: Latitude in degrees.

dtGMT: Current time as Greenwich Mean Time (GMT).

Programming

TF8010 85Version: 1.1

VAR_OUTPUT
fSunAzimuth : LREAL;
fSunElevation : LREAL;

fSunAzimuth: Direction of the sun (northern hemisphere: 0° north ... 90° east ... 180° south ... 270° west ... /
southern hemisphere: 0° south ... 90° east ... 180° north ... 270° west ...).

fSunElevation: Height of the sun (0° horizontal ... 90° vertical).

Example
PROGRAM MAIN
VAR
 fbCalcSunPosition : FB_CalcSunPosition;
 fSunAzimuth : LREAL;
 fSunElevation : LREAL;
 fbGetSystemTime : GETSYSTEMTIME;
 fileTime : T_FILETIME;
END_VAR

fbGetSystemTime(timeLoDW=>fileTime.dwLowDateTime,
 timeHiDW=>fileTime.dwHighDateTime);

fbCalcSunPosition(fDegreeOfLongitude := 8.5,
 fDegreeOfLatitude := 51.9,
 dtGMT := FILETIME_TO_SYSTEMTIME(fileTime));
fSunAzimuth := fbCalcSunPosition.fSunAzimuth;
fSunElevation := fbCalcSunPosition.fSunElevation;

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.8.9 FB_CalcSunriseSunset

Function block for calculating sunrise and sunset based on the longitude, latitude, reference meridian and
time.

The earth is divided into several time zones. Each time zone is associated with a reference meridian.
Reference meridian for some of the time zones:

Time zone Reference meridian
GMT (Greenwich Mean Time) λGMT = 0°
CET (Central European Time) λCET = 15°
CEST (Central European Summer Time) λCEST = 30°

In specifying the time, the time according to Greenwich Mean Time (GMT) must be given.

This function block is only available in the PC version of the library.

Programming

TF801086 Version: 1.1

VAR_INPUT
fDegreeOfLongitude : LREAL := 8.5;
fDegreeOfLatitude : LREAL := 51.9;
fReferenceMeridian : LREAL;
dCurrentDate : DATE;

fDegreeOfLongitude: Longitude in degrees.

fDegreeofLatitude: Latitude in degrees.

fReferenceMeridian: Reference meridian of the time zone.

dCurrentDate: current date.

VAR_OUTPUT
todSunrise : TOD;
todSunset : TOD;

todSunrise: Sunrise. Output of hour and minute.

todSunset: Sunset. Output of hour and minute.

Example
PROGRAM MAIN
VAR
 fbCalcSunriseSunset : FB_CalcSunriseSunset;
 todSunrise : TOD;
 todSunset : TOD;
 fbGetSystemTime : GETSYSTEMTIME;
 fileTime : T_FILETIME;
 dtCurrentDate : DT;END_VAR

fbGetSystemTime(timeLoDW =>fileTime.dwLowDateTime,
 timeHiDW =>fileTime.dwHighDateTime);
dtCurrentDate := FILETIME_TO_DT(fileTime);

fbCalcSunriseSunset(fDegreeOfLongitude := 8.5, (* Longitude of Verl *)
 fDegreeOfLatitude := 51.9, (* Latitude of Verl *)
 fReferenceMeridian := 30.0, (* Central European Summer Time *)
 dCurrentDate := DT_TO_DATE(dtCurrentDate),
 todSunrise => todSunrise,
 todSunset => todSunset);

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 87Version: 1.1

4.1.8.10 FB_CalcPublicHolidaysDE

German holidays for the current year are calculated based on the date entered. A boolean output indicates
whether the entered date matches one of the calculated holidays. To ensure international readability the
function block was translated into English. The parameters have the following meaning:

Programming

TF801088 Version: 1.1

English name German name
NewYears Day Neujahr
Epiphany Heilige Drei Könige
Good Friday Karfreitag
Easter Sunday Ostersonntag
Easter Monday Ostermontag
Labor Day Maifeiertag
Ascension Day Christi Himmelfahrt
Whit Sunday Pfingstsonntag
Whit Monday Pfingstmontag
Corpus Christi Fronleichnam
Assumption Day Mariä Himmelfahrt
German Unification Day Tag Der Deutschen Einheit
Reformation Day Reformationstag
All Saints Day Allerheiligen
Penance Day Buß- und Bettag
Christmas Eve Heiligabend
1st ChristmasDay 1. Weihnachtstag
2nd ChristmasDay 2. Weihnachtstag
New Years Eve Silvester

VAR_INPUT
dCurrentDate : DATE;

dCurrentDate: current date.

VAR_OUTPUT
dNewYearsDay : DATE;
dEpiphany : DATE;
dGoodFriday : DATE;
dEasterSunday : DATE;
dEasterMonday : DATE;
dLabourDay : DATE;
dAscensionDay : DATE;
dWhitSunday : DATE;
dWhitMonday : DATE;
dCorpusChristi : DATE;
dAssumptionDay : DATE;
dGermanUnificationDay : DATE;
dReformationDay : DATE;
dAllSaintsDay : DATE;
dPenanceDay : DATE;
dChristmasEve : DATE;
d1stChristmasDay : DATE;
d2ndChristmasDay : DATE;
dNewYearsEve : DATE;
bNewYearsDay : BOOL;
bEpiphany : BOOL;
bGoodFriday : BOOL;
bEasterSunday : BOOL;
bEasterMonday : BOOL;
bLabourDay : BOOL;
bAscensionDay : BOOL;
bWhitSunday : BOOL;
bWhitMonday : BOOL;
bCorpusChristi : BOOL;
bAssumptionDay : BOOL;
bGermanUnificationDay : BOOL;
bReformationDay : BOOL;
bAllSaintsDay : BOOL;
bPenanceDay : BOOL;
bChristmasEve : BOOL;

Programming

TF8010 89Version: 1.1

b1stChristmasDay : BOOL;
b2ndChristmasDay : BOOL;
bNewYearsEve : BOOL;

dxxxxxx: Date of the respective holiday.

bxxxxxx: Boolean statement indicating whether today is the respective holiday.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.8.11 FB_CalcPublicHolidaysUS

Calculation of the United States public holidays.

US public holidays for the current year are calculated based on the date entered. A boolean output indicates
whether the entered date matches one of the calculated holidays. To ensure international readability the
function block was translated into English. The parameters have the following meaning:

Programming

TF801090 Version: 1.1

English name German
New Year's Day Neujahr
Martin Luther King "JR" Day Martin Luther King Tag
Presidents Day Tag der Präsidenten
Good Friday Karfreitag
Easter Sunday Ostersonntag
Memorial Day Gedenktag
Independence Day Unabhängigkeitstag
Labor Day Maifeiertag
Columbus Day Kolumbus-Tag
Veterans Day Veteranentag
Thanksgiving Day Erntedank
Thanksgiving Friday Schwarzer Friday (Freitag nach Erntedank)
Christmas Eve Heiligabend
Christmas Day Weihnachtstag
New Years Eve Silvester

VAR_INPUT
dCurrentDate : DATE;

dCurrentDate: current date.

VAR_OUTPUT
dNewYearsDay : DATE;
dEpiphany : DATE;
dGoodFriday : DATE;
dEasterSunday : DATE;
dEasterMonday : DATE;
dLabourDay : DATE;
dAscensionDay : DATE;
dWhitSunday : DATE;
dWhitMonday : DATE;
dCorpusChristi : DATE;
dAssumptionDay : DATE;
dGermanUnificationDay : DATE;
dReformationDay : DATE;
dAllSaintsDay : DATE;
dPenanceDay : DATE;
dChristmasEve : DATE;
d1stChristmasDay : DATE;
d2ndChristmasDay : DATE;
dNewYearsEve : DATE;
bNewYearsDay : BOOL;
bEpiphany : BOOL;
bGoodFriday : BOOL;
bEasterSunday : BOOL;
bEasterMonday : BOOL;
bLabourDay : BOOL;
bAscensionDay : BOOL;
bWhitSunday : BOOL;
bWhitMonday : BOOL;
bCorpusChristi : BOOL;
bAssumptionDay : BOOL;
bGermanUnificationDay : BOOL;
bReformationDay : BOOL;
bAllSaintsDay : BOOL;
bPenanceDay : BOOL;
bChristmasEve : BOOL;
b1stChristmasDay : BOOL;
b2ndChristmasDay : BOOL;
bNewYearsEve : BOOL;

dxxxxxx: Date of the respective holiday.

bxxxxxx: Boolean statement indicating whether today is the respective holiday.

Programming

TF8010 91Version: 1.1

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.1.8.12 FB_CalcFederalHolidaysUS

US federal holidays for the current year are calculated based on the date entered. A boolean output
indicates whether the entered date matches one of the calculated holidays. To ensure international
readability the function block was translated into English. The parameters have the following meaning:

English name German name
NewYears Day Neujahr
Martin Luther King "JR" Day Martin Luther King Tag
Presidents Day Tag der Präsidenten
Memorial Day Gedenktag
Independence Day Unabhängigkeitstag
Labor Day Labor Day
Columbus Day Kolumbus-Tag
Veterans Day Veteranentag
Thanksgiving Day Erntedank
Christmas Day Weihnachtstag

VAR_INPUT
dCurrentDate : DATE;

dCurrentDate: current date.

Programming

TF801092 Version: 1.1

VAR_OUTPUT
dNewYearsDay : DATE;
dMartinLutherKingJrDay : DATE;
dPresidentsDay : DATE;
dMemorialDay : DATE;
dIndependenceDay : DATE;
dLaborDay : DATE;
dColumbusDay : DATE;
dVeteransDay : DATE;
dThanksgivingDay : DATE;
dChristmasDay : DATE;
dNewYearsDay : BOOL;
dMartinLutherKingJrDay : BOOL;
dPresidentsDay : BOOL;
dMemorialDay : BOOL;
dIndependenceDay : BOOL;
dLaborDay : BOOL;
dColumbusDay : BOOL;
dVeteransDay : BOOL;
dThanksgivingDay : BOOL;
dChristmasDay : BOOL;;

dxxxxxx: Date of the respective holiday.

bxxxxxx: Boolean statement indicating whether today is the respective holiday.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

Programming

TF8010 93Version: 1.1

4.1.9 Error Codes
Value (hex) Value (dec) Description
0x0000 0 No error.
0x0001 1 FB_MaximumDemandController() [} 16]: -- reserved error code --
0x0002 2 FB_MaximumDemandController() [} 16]: The input parameter

fMeterConstant is "0".
0x0003 3 FB_LightControl() [} 49] : The switch range (nSwitchRange) in the first

or second element of the value table arrControlTable is 0. It is thus
assumed that the table has only one value set or none at all.

0x0004 4 FB_LightControl() [} 49] : 2 neighboring input values nActualValue in
the value table arrControlTable lie too close together i.e. each in the
switching range of the other.

0x0005 5 FB_Sequencer() [} 52] : The start index nStartIndex is outside of the
valid range [1..50].

0x0006 6 FB_Sequencer() [} 52] : The start index nStartIndex refers to a point
that, for its part, marks the end of a sequence (zero entries).

0x0007 7 Scheduler function blocks: An input parameter is not in the valid
range.

0x0008 8 Scheduler function blocks: None is set for the selection parameters
(weekly time clock: selection of weekdays, monthly time clocks:
selection of months).

0x0009 9 Scheduler function blocks: A day in the month was selected that is not
valid.

0x000A 10 FB_ConstantLightControlEco() [} 33] : Input parameter nMinLevel is
greater than or equal to nMaxLevel.

0x000B 11 FB_ScenesLighting() [} 63], FB_ScenesVenetianBlind() [} 66]: Input
parameter sFile is invalid (empty).

0x000C 12 FB_ScenesLighting() [} 63], FB_ScenesVenetianBlind() [} 66]: Internal
error. File with the scene values was not found.

0x000D 13 FB_ScenesLighting() [} 63], FB_ScenesVenetianBlind() [} 66]: Internal
error: No further free file handles available.

4.2 DUTs

4.2.1 Enumerations

4.2.1.1 E_StartEnd
TYPE E_StartEnd :
(
 eSTARTTIME_ENDTIME := 1,
 eSTARTTIME_DURATION := 2,
 eSTARTTIME_ENDEVENT := 3,
 eSTARTEVENT_ENDTIME := 4,
 eSTARTEVENT_DURATION := 5,
 eSTARTEVENT_ENDEVENT := 6
) INT := Undefined;
END_TYPE

eSTARTTIME_ENDTIME: Selection of start/end time. If the start time is equal or greater the end time, the
end is allocated to the next day.

eSTARTTIME_DURATION: Selection of start time/duration.

eSTARTTIME_ENDEVENT: Selection of start time/end event.

Programming

TF801094 Version: 1.1

eSTARTEVENT_ENDTIME: Selection of start event/end time. If the start time is equal or greater the end
time, the end is allocated to the next day.

eSTARTEVENT_DURATION: Selection of start event/duration.

eSTARTEVENT_ENDEVENT: Selection of start event/end event.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.2.2 Structures

4.2.2.1 ST_ControlTable
TYPE ST_ControlTable :
STRUCT
 nActualValue : UINT;
 nControlValue : UINT;
 nSwitchRange : UINT;
END_STRUCT
END_TYPE

nActualValue: Current brightness.

nControlValue: Corresponding switch point (control value).

nSwitchRange: Threshold value around the input value interpolation point at which switching takes place.
The entry “0” marks the beginning of the unused area of the table.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.2.2.2 ST_MDCInDataKL1501
TYPE ST_MDCInDataKL1501 :
STRUCT
 nStatus : USINT;
 nDummy1 : USINT;
 nDummy2 : USINT;
 nDummy3 : USINT;
 nData : DWORD;
END_STRUCT
END_TYPE

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.2.2.3 ST_MDCLoadParameters
TYPE ST_MDCLoadParameters :
STRUCT
 bConnected : BOOL;
 nDegreeOfPriority : INT;
 tMINPowerOnTime : TIME;
 tMAXPowerOffTime : TIME;
END_STRUCT
END_TYPE

Programming

TF8010 95Version: 1.1

bConnected: TRUE = consumer connected; FALSE = consumer not connected.

nDegreeOfPriority: Indicates the switch-off priority; consumers with a low priority will be switched off first.
(1 => low; ... 8 => high priority)

tMINPowerOnTime: The minimum power-on time (minimum ramp-up time) during which the consumer may
not be switched off.

tMINPowerOffTime: The minimum power-off time (recovery time) during which the consumer may not be
switched on again.

tMAXPowerOffTime: The maximum power-off time after which the consumer must be switched on again.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.2.2.4 ST_MDCOutDataKL1502
TYPE ST_MDCOutDataKL1501 :
STRUCT
 nCtrl : USINT;
 nDummy1 : USINT;
 nDummy2 : USINT;
 nDummy3 : USINT;
 nData : DWORD;
END_STRUCT
END_TYPE

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.2.2.5 ST_SequenceTable
TYPE ST_SequenceTable :
STRUCT
 nTargetValue : UINT;
 tRampTime : TIME;
 tProlongTime : TIME;
END_STRUCT
END_TYPE

nTargetValue: Target value.

tRampTime: Time to reach the target value.

tProlongTime: Dwell time at the target value.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.2.2.6 ST_StartEnd
TYPE ST_StartEnd :
STRUCT
 todStartTime : TOD;
 bStartEvent : BOOL;
 tDuration : TIME;
 todEndTime : TOD;

Programming

TF801096 Version: 1.1

 bEndEvent : BOOL;
END_STRUCT
END_TYPE

todStartTime: Start time.

bStartEvent: Start event

tDuration: Switching duration.

todEndTime: End time.

bEndEvent: End event.

Requirements

Development environment Required PLC library
TwinCAT from v3.1.4020.32 Tc2_BABasic from v3.1.0.0

4.3 GVLs

4.3.1 Constants
VAR_GLOBAL CONSTANT
 TCSIGNAL_INVALID : WORD := 16#0000;
 TCSIGNAL_SIGNALED : WORD := 16#0001;
 TCSIGNAL_RESET : WORD := 16#0002;
 TCSIGNAL_CONFIRMED : WORD := 16#0010;
 TCSIGNAL_SIGNALCON : WORD := 16#0011;
 TCSIGNAL_RESETCON : WORD := 16#0012;

 OPTION_INIFINITE_LOOP : DWORD := 16#0000_0001;
END_VAR

Appendix

TF8010 97Version: 1.1

5 Appendix

5.1 Support and Service
Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet
pages: https://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

• support
• design, programming and commissioning of complex automation systems
• and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service
• repair service
• spare parts service
• hotline service

Hotline: +49 5246 963 460
Fax: +49 5246 963 479
e-mail: service@beckhoff.com

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com
web: https://www.beckhoff.com

https://www.beckhoff.com/support
https://www.beckhoff.com
https://www.beckhoff.com

Beckhoff Automation GmbH & Co. KG
Hülshorstweg 20
33415 Verl
Germany
Phone: +49 5246 9630
info@beckhoff.com
www.beckhoff.com

More Information:
www.beckhoff.com/tf8010

mailto:info@beckhoff.de?subject=TF8010
https://www.beckhoff.com
https://www.beckhoff.com/tf8010

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Introduction
	3 Integration in TwinCAT
	3.1 System requirements
	3.2 Installation
	3.3 Licensing

	4 Programming
	4.1 POUs
	4.1.1 Conversion functions
	4.1.1.1 F_Scale
	4.1.1.2 Temperature conversion functions

	4.1.2 Energy management
	4.1.2.1 FB_MaximumDemandController

	4.1.3 Facade
	4.1.3.1 FB_RoofWindow
	4.1.3.2 FB_VenetianBlind
	4.1.3.3 FB_VenetianBlindEx
	4.1.3.4 FB_VenetianBlindEx1Switch

	4.1.4 Filter functions
	4.1.4.1 FB_PT1
	4.1.4.2 FB_PT2

	4.1.5 Lighting
	4.1.5.1 FB_ConstantLightControlEco
	4.1.5.2 FB_Dimmer1Switch
	4.1.5.3 FB_Dimmer1SwitchEco
	4.1.5.4 FB_Dimmer2Switch
	4.1.5.5 FB_Dimmer2SwitchEco
	4.1.5.6 FB_Dimmer3Switch
	4.1.5.7 FB_Light
	4.1.5.8 FB_LightControl
	4.1.5.9 FB_Ramp
	4.1.5.10 FB_Sequencer
	4.1.5.11 FB_StairwellDimmer
	4.1.5.12 FB_StairwellLight

	4.1.6 Scene management
	4.1.6.1 FB_RoomOperation
	4.1.6.2 FB_ScenesLighting
	4.1.6.3 FB_ScenesVenetianBlind

	4.1.7 Signal processing
	4.1.7.1 FB_ShortLongClick
	4.1.7.2 FB_SignallingContact
	4.1.7.3 FB_SingleDoubleClick
	4.1.7.4 FB_ThresholdSwitch

	4.1.8 Timer functions
	4.1.8.1 FB_DailyScheduler
	4.1.8.2 FB_WeeklyScheduler
	4.1.8.3 FB_MonthlyScheduler1
	4.1.8.4 FB_MonthlyScheduler2
	4.1.8.5 FB_YearlyScheduler
	4.1.8.6 Timer program example
	4.1.8.7 FB_WeeklyTimeSwitch
	4.1.8.8 FB_CalcSunPosition
	4.1.8.9 FB_CalcSunriseSunset
	4.1.8.10 FB_CalcPublicHolidaysDE
	4.1.8.11 FB_CalcPublicHolidaysUS
	4.1.8.12 FB_CalcFederalHolidaysUS

	4.1.9 Error Codes

	4.2 DUTs
	4.2.1 Enumerations
	4.2.1.1 E_StartEnd

	4.2.2 Structures
	4.2.2.1 ST_ControlTable
	4.2.2.2 ST_MDCInDataKL1501
	4.2.2.3 ST_MDCLoadParameters
	4.2.2.4 ST_MDCOutDataKL1502
	4.2.2.5 ST_SequenceTable
	4.2.2.6 ST_StartEnd

	4.3 GVLs
	4.3.1 Constants

	5 Appendix
	5.1 Support and Service

		documentation@beckhoff.com
	2022-07-04T08:40:22+0200
	Beckhoff Automation, Verl
	Documentation Publishing

