
# **BECKHOFF** New Automation Technology

Documentation | EN

# EJ5042-0010

2-Channel encoder interface, BiSS-C, without sensor supply





## **Table of contents**

| 1 | Fore  | word                          |                                                                                          | 5  |  |  |  |
|---|-------|-------------------------------|------------------------------------------------------------------------------------------|----|--|--|--|
|   | 1.1   | Notes o                       | n the documentation                                                                      | 5  |  |  |  |
|   | 1.2   | Safety in                     | nstructions                                                                              | 6  |  |  |  |
|   | 1.3   | Intended                      | d use                                                                                    | 7  |  |  |  |
|   | 1.4   | Signal d                      | listribution board                                                                       | 7  |  |  |  |
|   | 1.5   | .5 Documentation issue status |                                                                                          |    |  |  |  |
|   | 1.6   | Guide th                      | nrough documentation                                                                     | 8  |  |  |  |
|   | 1.7   | Marking                       | of EtherCAT plug-in modules                                                              | 8  |  |  |  |
|   |       | 1.7.1                         | Beckhoff Identification Code (BIC)                                                       | 11 |  |  |  |
|   |       | 1.7.2                         | Electronic access to the BIC (eBIC)                                                      | 13 |  |  |  |
|   |       | 1.7.3                         | Certificates                                                                             | 15 |  |  |  |
| 2 | Syste | em overv                      | /iew                                                                                     | 16 |  |  |  |
| 3 | EJ50  | 42-0010                       | - Product description                                                                    | 17 |  |  |  |
|   | 3.1   | Introduc                      | tion                                                                                     | 17 |  |  |  |
|   | 3.2   | Technic                       | al Data                                                                                  | 18 |  |  |  |
|   | 3.3   | Pinout                        |                                                                                          | 19 |  |  |  |
|   | 3.4   | LEDs                          |                                                                                          | 21 |  |  |  |
| 4 | Insta | llation of                    | f EJ modules                                                                             | 22 |  |  |  |
|   | 4.1   | Power s                       | supply for the EtherCAT plug-in modules                                                  | 22 |  |  |  |
|   | 4.2   | Note on                       | load voltage supply                                                                      | 23 |  |  |  |
|   | 4.3   | EJxxxx                        | - dimensions                                                                             | 24 |  |  |  |
|   | 4.4   | Installat                     | ion positions and minimum distances                                                      | 25 |  |  |  |
|   |       | 4.4.1                         | Minimum distances for ensuring installability                                            |    |  |  |  |
|   |       | 4.4.2                         | Installation positions                                                                   |    |  |  |  |
|   | 4.5   | Codings                       | ·<br>3                                                                                   | 28 |  |  |  |
|   |       | 4.5.1                         | Color coding                                                                             | 28 |  |  |  |
|   |       | 4.5.2                         | Mechanical position coding                                                               |    |  |  |  |
|   | 4.6   | Installat                     | ion on the signal distribution board                                                     | 30 |  |  |  |
|   | 4.7   |                               | on options                                                                               |    |  |  |  |
|   |       | 4.7.1                         | Using placeholder modules for unused slots                                               |    |  |  |  |
|   |       | 4.7.2                         | Linking with EtherCAT Terminals and EtherCAT Box modules via an Ethernet/Ethe connection |    |  |  |  |
|   | 4.8   | IPC inte                      | gration                                                                                  | 34 |  |  |  |
|   | 4.9   | Disasse                       | mbly of the signal distribution board                                                    | 36 |  |  |  |
|   | 4.10  | Disposa                       | ıl                                                                                       | 36 |  |  |  |
| 5 | Ethe  | rCAT bas                      | sics                                                                                     | 37 |  |  |  |
| 6 | Com   | missioni                      | ng                                                                                       | 38 |  |  |  |
|   | 6.1   | Process                       | data                                                                                     | 38 |  |  |  |
|   |       | 6.1.1                         | Sync Manager (SM)                                                                        | 38 |  |  |  |
|   |       | 6.1.2                         | PDO Assignment                                                                           | 38 |  |  |  |
|   |       | 6.1.3                         | Predefined PDO Assignment                                                                | 40 |  |  |  |
|   |       | 6.1.4                         | Interpretation of process data                                                           | 40 |  |  |  |
|   | 6.2   | Parame                        | terization                                                                               | 42 |  |  |  |



|   |       | 6.2.1     | Parameterization as BiSS-C master              | 42 |
|---|-------|-----------|------------------------------------------------|----|
|   |       | 6.2.2     | Error handling BISS-C mode                     | 43 |
|   |       | 6.2.3     | Parameterization as SSI master                 | 44 |
|   | 6.3   | Cycle tin | ne                                             | 45 |
|   | 6.4   | EJ5042-   | 0010 - Object description and parameterization | 45 |
|   |       | 6.4.1     | Restore object                                 | 45 |
|   |       | 6.4.2     | Configuration data                             | 46 |
|   |       | 6.4.3     | Input data                                     |    |
|   |       | 6.4.4     | Diagnostic data                                | 47 |
|   |       | 6.4.5     | Standard objects (0x1000-0x1FFF)               | 47 |
| 7 | Diagı | nostics - | basic principles of diag messages              | 53 |
| 8 | Appe  | ndix      |                                                | 63 |
|   | 8.1   | Support   | and Service                                    | 63 |



## 1 Foreword

## 1.1 Notes on the documentation

#### Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

The qualified personnel is obliged to always use the currently valid documentation.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

### **Disclaimer**

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

#### **Trademarks**

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

## **Patent Pending**

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.



EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

#### Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.



## 1.2 Safety instructions

#### Safety regulations

Please note the following safety instructions and explanations!

Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

### **Exclusion of liability**

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

#### Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

## Signal words

The signal words used in the documentation are classified below. In order to prevent injury and damage to persons and property, read and follow the safety and warning notices.

## Personal injury warnings

## **A** DANGER

Hazard with high risk of death or serious injury.

#### **⚠ WARNING**

Hazard with medium risk of death or serious injury.

#### **A CAUTION**

There is a low-risk hazard that could result in medium or minor injury.

### Warning of damage to property or environment

#### **NOTICE**

The environment, equipment, or data may be damaged.

### Information on handling the product



This information includes, for example:

recommendations for action, assistance or further information on the product.



## 1.3 Intended use

## **⚠ WARNING**

## Caution - Risk of injury!

EJ components may only be used for the purposes described below!

## 1.4 Signal distribution board

## NOTICE

## Signal distribution board

Make sure that the EtherCAT plug-in modules are used only on a signal distribution board that has been developed and manufactured in accordance with the <u>Design Guide</u>.

## 1.5 Documentation issue status

| Version | Comment                                     |  |
|---------|---------------------------------------------|--|
| 1.1     | Update Technical data                       |  |
|         | Update chapter "Installation of EJ modules" |  |
|         | Update structure.                           |  |
| 1.0     | First publication EJ5042-0010               |  |



## 1.6 Guide through documentation

## NOTICE



## Further components of documentation

This documentation describes device-specific content. It is part of the modular documentation concept for Beckhoff I/O components. For the use and safe operation of the device / devices described in this documentation, additional cross-product descriptions are required, which can be found in the following table.

| Title                                                  | Description                                                                               |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|
| EtherCAT System Documentation (PDF)                    | System overview                                                                           |
|                                                        | EtherCAT basics                                                                           |
|                                                        | Cable redundancy                                                                          |
|                                                        | Hot Connect                                                                               |
|                                                        | EtherCAT devices configuration                                                            |
| Design Guide EJ8xxx -<br>Signal distribution board for | Notes on the design of a signal distribution board for standard EtherCAT plug-in modules. |
| standard EtherCAT plug-in modules (PDF)                | Requirements for the signal distribution board                                            |
|                                                        | Backplane mounting guidelines                                                             |
|                                                        | Module placement                                                                          |
|                                                        | Routing guidelines                                                                        |
| Infrastructure for EtherCAT/Ethernet (PDF)             | Technical recommendations and notes for design, implementation and testing                |
| Software Declarations I/O (PDF)                        | Open source software declarations for Beckhoff I/O components                             |

The documentations can be viewed at and downloaded from the Beckhoff website (www.beckhoff.com) via:

- the "Documentation and Download" area of the respective product page,
- · the Download finder,
- the Beckhoff Information System.

## 1.7 Marking of EtherCAT plug-in modules

## Designation

A Beckhoff EtherCAT device has a 14-digit **technical designation**, made up as follows (e.g. EJ1008-0000-0017)

- · Order identifier
  - ∘ family key: EJ
  - product designation: The first digit of product designation is used for assignment to a product group (e.g. EJ2xxx = digital output module).
  - $\circ~$  Version number: The four digit version number identifies different product variants.
- · Revision number:

It is incremented when changes are made to the product.

The Order identifier and the revision number are printed on the side of EtherCAT plug-in modules (s. following illustration (A and B).





Fig. 1: Order identifier (A), Revision number (B) and serial number (C) using the example of EJ1008

| Product group                           | Example                          |                                                                                          |          |  |  |
|-----------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|----------|--|--|
|                                         | Product designation              | Version                                                                                  | Revision |  |  |
| EtherCAT Coupler<br>EJ11xx              | EJ1101                           | -0022<br>(Coupler with external connectors, power supply module and optional ID switches | -0016    |  |  |
| Digital input modules EJ1xxx            | EJ1008<br>8-channel              | -0000<br>(basic type)                                                                    | -0017    |  |  |
| Digital output modules EJ2xxx           | EJ2521<br>1-channel              | -0224<br>(2 x 24 V outputs)                                                              | -0016    |  |  |
| Analog input modules<br>EJ3xxx          | EJ3318<br>8-channel thermocouple | -0000<br>(basic type)                                                                    | -0017    |  |  |
| Analog output modules EJ4xxx            | EJ4134<br>4-channel              | -0000<br>(basic type)                                                                    | -0019    |  |  |
| Special function modules EJ5xxx, EJ6xxx | EJ6224<br>IO-Link master         | -0090<br>(with TwinSAFE SC)                                                              | -0016    |  |  |
| Motion modules<br>EJ7xxx                | EJ7211<br>servomotor             | -9414<br>(with ECT, STO and TwinSAFE SC)                                                 | -0029    |  |  |

#### **Notes**

- The elements mentioned above result in the **technical designation**. EJ1008-0000-0017 is used in the example below.
- EJ1008-0000 is the order identifier, in the case of "-0000" usually abbreviated to EJ1008.
- The revision -0017 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff.
  - In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.
  - Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for <u>download</u> from the Beckhoff web site.
- The product designation, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal.

#### Serial number

The serial number for EtherCAT plug-in modules is usually the 8-digit number printed on the side of the module (see following illustration C). The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch.





Fig. 2: Order identifier (A), revision number (B) and serial number (C) using the example of EJ1008

| Serial number                               | Example serial number: 08 15 08 16 |
|---------------------------------------------|------------------------------------|
| KK - week of production (CW, calendar week) | 08 - week of production: 08        |
| YY - year of production                     | 15 - year of production: 2015      |
| FF - firmware version                       | 08 -f irmware version: 08          |
| HH - hardware version                       | 16 - hardware version: 16          |



## 1.7.1 Beckhoff Identification Code (BIC)

The **B**eckhoff Identification **C**ode (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.



Fig. 3: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

- · on the packaging unit
- directly on the product (if space suffices)
- · on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.

Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, it shall be replaced by spaces. The data under positions 1-4 are always available.

The following information is contained:



| Item<br>no. | Type of informa-<br>tion              | Explanation                                                                 | Data iden-<br>tifier | Number of digits incl. data identifier | Example              |
|-------------|---------------------------------------|-----------------------------------------------------------------------------|----------------------|----------------------------------------|----------------------|
| 1           | Beckhoff order number                 | Beckhoff order number                                                       | 1P                   | 8                                      | 1P072222             |
| 2           | Beckhoff Traceability<br>Number (BTN) | Unique serial number, see note below                                        | S                    | 12                                     | SBTNk4p562d7         |
| 3           | Article description                   | Beckhoff article description, e.g. EL1008                                   | 1K                   | 32                                     | 1KEL1809             |
| 4           | Quantity                              | Quantity in packaging unit, e.g. 1, 10, etc.                                | Q                    | 6                                      | Q1                   |
| 5           | Batch number                          | Optional: Year and week of production                                       | 2P                   | 14                                     | 2P4015031800<br>16   |
| 6           | ID/serial number                      | Optional: Present-day<br>serial number system,<br>e.g. with safety products | 51S                  | 12                                     | <b>51S</b> 678294104 |
| 7           | Variant number                        | Optional: Product variant number on the basis of standard products          | 30P                  | 32                                     | 30PF971 ,<br>2*K183  |
|             |                                       |                                                                             |                      |                                        |                      |

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

#### Structure of the BIC

Example of composite information from items 1 - 4 and with the above given example value on positon 6. The data identifiers are marked in bold font for better display:

1P072222SBTNk4p562d71KEL1809 Q1 51S678294

Accordingly as DMC:



Fig. 4: Example DMC **1P**072222**S**BTNk4p562d7**1K**EL1809 **Q**1 **51S**678294

#### **BTN**

An important component of the BIC is the Beckhoff Traceability Number (BTN, item no. 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.

### **NOTICE**

This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.



## 1.7.2 Electronic access to the BIC (eBIC)

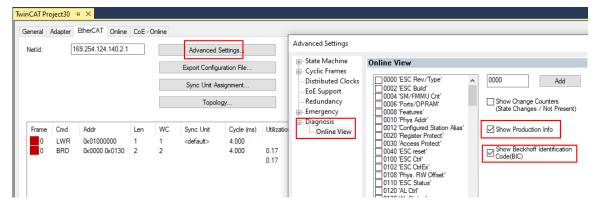
### Electronic BIC (eBIC)

The Beckhoff Identification Code (BIC) is applied to the outside of Beckhoff products in a visible place. If possible, it should also be electronically readable.

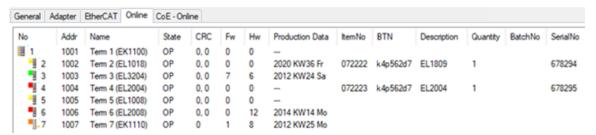
Decisive for the electronic readout is the interface via which the product can be electronically addressed.

## K-bus devices (IP20, IP67)

Currently, no electronic storage and readout is planned for these devices.


#### EtherCAT devices (IP20, IP67)

All Beckhoff EtherCAT devices have a so-called ESI-EEPROM, which contains the EtherCAT identity with the revision number. Stored in it is the EtherCAT slave information, also colloquially known as ESI/XML configuration file for the EtherCAT master. See the corresponding chapter in the EtherCAT system manual (Link) for the relationships.


The eBIC is also stored in the ESI-EEPROM. The eBIC was introduced into the Beckhoff I/O production (terminals, box modules) from 2020; widespread implementation is expected in 2021.

The user can electronically access the eBIC (if existent) as follows:

- With all EtherCAT devices, the EtherCAT master (TwinCAT) can read the eBIC from the ESI-EEPROM
  - From TwinCAT 3.1 build 4024.11, the eBIC can be displayed in the online view.
  - To do this, check the checkbox "Show Beckhoff Identification Code (BIC)" under EtherCAT → Advanced Settings → Diagnostics:



The BTN and its contents are then displayed:



- Note: as can be seen in the illustration, the production data HW version, FW version and production date, which have been programmed since 2012, can also be displayed with "Show Production Info".
- Access from the PLC: From TwinCAT 3.1. build 4024.24 the functions FB\_EcReadBIC and FB\_EcReadBTN are available in the Tc2\_EtherCAT Library from v3.3.19.0 for reading into the PLC..
- In the case of EtherCAT devices with CoE directory, the object 0x10E2:01 can additionally by used to display the device's own eBIC; the PLC can also simply access the information here:



The device must be in PREOP/SAFEOP/OP for access:

| Inc | dex     | Name                                   | Rags | Value                         |    |                |
|-----|---------|----------------------------------------|------|-------------------------------|----|----------------|
|     | 1000    | Device type                            | RO   | 0x015E1389 (22942601)         |    |                |
|     | 1008    | Device name                            | RO   | ELM3704-0000                  |    |                |
|     | 1009    | Hardware version                       | RO   | 00                            |    |                |
|     | 100A    | Software version                       | RO   | 01                            |    |                |
|     | 100B    | Bootloader version                     | RO   | J0.1.27.0                     |    |                |
| •   | 1011:0  | Restore default parameters             | RO   | >1<                           |    |                |
| •   | 1018:0  | Identity                               | RO   | >4<                           |    |                |
| 8   | 10E2:0  | Manufacturer-specific Identification C | RO   | >1<                           |    |                |
|     | 10E2:01 | SubIndex 001                           | RO   | 1P158442SBTN0008jekp1KELM3704 | Q1 | 2P482001000016 |
| •   | 10F0:0  | Backup parameter handling              | RO   | >1<                           |    |                |
| +   | 10F3:0  | Diagnosis History                      | RO   | >21 <                         |    |                |
|     | 10F8    | Actual Time Stamp                      | RO   | 0x170bfb277e                  |    |                |

- The object 0x10E2 will be introduced into stock products in the course of a necessary firmware revision.
- From TwinCAT 3.1. build 4024.24 the functions *FB\_EcCoEReadBIC* and *FB\_EcCoEReadBTN* are available in the Tc2 EtherCAT Library from v3.3.19.0 for reading into the PLC.
- For processing the BIC/BTN data in the PLC, the following auxiliary functions are available in *Tc2\_Utilities* from TwinCAT 3.1 build 4024.24 onwards
  - F\_SplitBIC: The function splits the Beckhoff Identification Code (BIC) sBICValue into its components based on known identifiers and returns the recognized partial strings in a structure ST\_SplitBIC as return value.
  - BIC\_TO\_BTN: The function extracts the BTN from the BIC and returns it as a value.
- Note: in the case of electronic further processing, the BTN is to be handled as a string(8); the identifier "SBTN" is not part of the BTN.
- · Technical background
  - The new BIC information is additionally written as a category in the ESI-EEPROM during the device production. The structure of the ESI content is largely dictated by the ETG specifications, therefore the additional vendor-specific content is stored with the help of a category according to ETG.2010. ID 03 indicates to all EtherCAT masters that they must not overwrite these data in case of an update or restore the data after an ESI update.
  - The structure follows the content of the BIC, see there. This results in a memory requirement of approx. 50..200 bytes in the EEPROM.
- · Special cases
  - If multiple, hierarchically arranged ESCs are installed in a device, only the top-level ESC carries the eBIC Information.
  - If multiple, non-hierarchically arranged ESCs are installed in a device, all ESCs carry the eBIC Information.
  - If the device consists of several sub-devices with their own identity, but only the top-level device is accessible via EtherCAT, the eBIC of the top-level device is located in the CoE object directory 0x10E2:01 and the eBICs of the sub-devices follow in 0x10E2:nn.

### PROFIBUS, PROFINET, DeviceNet devices etc.

Currently, no electronic storage and readout is planned for these devices.



## 1.7.3 Certificates

- The EhterCAT plug-in modules meet the requirements of the EMC and Low Voltage Directive. The CE mark is printed on the side of the modules.
- The cRUus imprint identifies devices that meet product safety requirements according to U.S. and Canadian regulations.
- The warning symbol is a request to read the corresponding documentation. The documentations for EtherCAT plug-in modules can be downloaded from the Beckhoff <a href="https://example.com/html/>homepage">homepage</a>.



Fig. 5: Marking for CE and UL using EJ1008 as an example



## 2 System overview

Electronically, the EJxxxx EtherCAT plug-in modules are based on the EtherCAT I/O system. The EJ system consists of the signal distribution board and EtherCAT plug-in modules. It is also possible to connect an IPC to the EJ system.

The EJ system is suitable for mass production applications, applications with small footprint and applications requiring a low total weight.

The machine complexity can be extended by means of the following:

- · reserve slots,
- the use of placeholder modules,
- linking of EtherCAT Terminals and EtherCAT Boxes via an EtherCAT connection.

The following diagram illustrates an EJ system. The components shown are schematic, to illustrate the functionality.

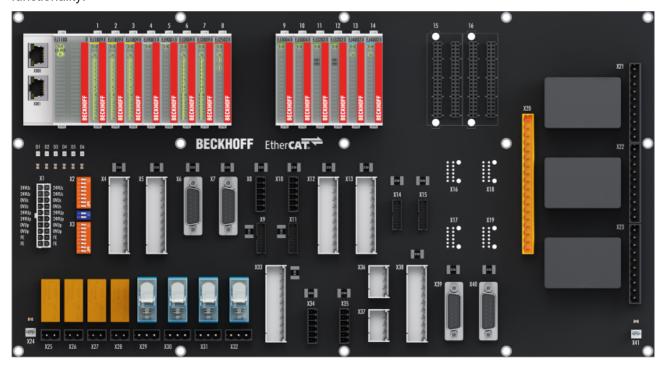



Fig. 6: EJ system sample

### Signal distribution board

The signal distribution board distributes the signals and the power supply to individual application-specific plug connectors, in order to connect the controller to further machine modules. Using pre-assembled cable harnesses avoids the need for time-consuming connection of individual wires. Coded components reduce the unit costs and the risk of miswiring.

Beckhoff offers development of signal distribution boards as an engineering service. Customers have the option to develop their own signal distribution board, based on the design guide.

## EtherCAT plug-in modules

Similar to the EtherCAT Terminal system, a module strand consists of a bus coupler and I/O modules. Almost all of the EtherCAT Terminals can also be manufactured in the EJ design as EtherCAT plug-in modules. The EJ modules are directly attached to the signal distribution board. The communication, signal distribution and supply take place via the contact pins at the rear of the modules and the PCB tracks of the signal distribution board. The coding pins at the rear serve as mechanical protection against incorrect connection. Color coding on the housing facilitates distinguishing of the modules.



## 3 EJ5042-0010 - Product description

## 3.1 Introduction



Fig. 7: EJ5042-0010

#### 2-channel BiSS C interface

The EJ5042-0010 EtherCAT plug-in module is a BiSS-C master and enables the direct connection of an absolute encoder with BiSS-C or SSI interface. Both singleturn and multiturn encoders are supported.

The extensive parameterization allows optimum adaptation to different encoder types.

#### Special features:

- · unidirectional BiSS-C communication
- · Parameterization per channel possible
- · Baud rate up to max. 10 MHz, variable
- separate evaluation of the error and warning bit in the process data
- Position value output with up to 64 bits (depending on the encoder resolution)
- · also usable as SSI master

Via the distributed clocks function, the position value is read out exactly synchronously with other processes. If the distributed clocks function is deactivated, the EJ5042-0010 clocks synchronize with the EtherCAT cycle.



#### 3.2 **Technical Data**

| Technical data                                         | EJ5042-0010                                                                                        |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Technology                                             | BiSS C interface, unidirectional                                                                   |
| Encoder connection                                     | binary input: D+, D-; Binary output: C+, C-                                                        |
| Encoder operating voltage                              | external power supply e.g. via EJ9505                                                              |
| Power supply for electronics                           | via Up contacts                                                                                    |
| Resolution                                             | max. 64 bit position, 2 bit status, 8 bit CRC                                                      |
| Data transfer rate                                     | adjustable up to 10 MHz (10 MHz default)                                                           |
| Current consumption from Up contacts                   | typ. 30 mA + load                                                                                  |
| Current consumption via E-bus                          | typ. 180 mA                                                                                        |
| Distributed Clocks                                     | yes                                                                                                |
| Special features                                       | adjustable baud rate, data length, two status bits (error and warning) can be evaluated separately |
| Configuration                                          | via EtherCAT master/CoE                                                                            |
| Electrical isolation                                   | 500 V (E-bus/field voltage)                                                                        |
| Permissible ambient temperature range during operation | -25°C +60°C (extended temperature range)                                                           |
| Permissible ambient temperature range during storage   | -40°C +85°C                                                                                        |
| Permissible relative air humidity                      | 95%, no condensation                                                                               |
| Operating altitude                                     | max. 2,000 m                                                                                       |
| Dimensions (W x H x D)                                 | approx. 12 mm x 66 mm x 55 mm                                                                      |
| Weight                                                 | approx. 30 g                                                                                       |
| Mounting                                               | on signal distribution board                                                                       |
| Pollution degree                                       | 2                                                                                                  |
| Mounting position                                      | Standard [ > 26]                                                                                   |
| Position of the coding pins [ > 29]                    | 2 and 5                                                                                            |
| Color coding                                           | grey                                                                                               |
| Vibration/shock resistance                             | conforms to EN 60068-2-6 /EN 60068-2-27 (with corresponding signal distribution board)             |
| EMC immunity/emission                                  | conforms to EN 61000-6-2 /EN 61000-6-4 (with corresponding signal distribution board)              |
| Protection class                                       | EJ module: IP20 EJ system: dependent on the signal distribution board and housing                  |
| Approvals/markings*                                    | CE, UKCA                                                                                           |

<sup>\*)</sup> Real applicable approvals/markings see type plate on the side (product marking).



## **CE** approval



The CE Marking refers to the EtherCAT plug-in module mentioned above. If the EtherCAT plug-in module is used in the production of a ready-to-use end product (PCB in conjunction with a housing), the manufacturer of the end product must check compliance of the overall system with relevant directives and CE certification.

To operate the EtherCAT plug-in modules, they must be installed in a housing.



## 3.3 Pinout

| EJ5042-0010 |    |                   |                   |                                         |
|-------------|----|-------------------|-------------------|-----------------------------------------|
| Pi          | n# | Signal            |                   |                                         |
| 1           | 2  | U <sub>EBUS</sub> | U <sub>EBUS</sub> | E-Bus contacts                          |
| 3           | 4  | GND               | GND               | L-Dus contacts                          |
| 5           | 6  | RX0+              | TX1+              |                                         |
| 7           | 8  | RX0-              | TX1-              | The power supply U <sub>EBUS</sub> is   |
| 9           | 10 | GND               | GND               | provided by the coupler and             |
| 11          | 12 | TX0+              | RX1+              | supplied from the supply voltage        |
| 13          | 14 | TX0-              | RX1-              | U <sub>S</sub> of the EtherCAT coupler. |
| 15          | 16 | GND               | GND               |                                         |
| 17          | 18 | Clock 1+          | Data 1+           | Signals                                 |
| 19          | 20 | Clock 1-          | Data 1-           |                                         |
| 21          | 22 | NC                | NC                |                                         |
| 23          | 24 | NC                | GND Sensor        |                                         |
| 25          | 26 | Clock 2+          | Data 2+           |                                         |
| 27          | 28 | Clock 2-          | Data 2-           |                                         |
| 29          | 30 | NC                | NC                | ]                                       |
| 31          | 32 | NC                | GND Sensor        |                                         |
| 33          | 34 | 0V Up             | 0V Up             | U <sub>P</sub> -Contacts                |
| 35          | 36 | 0V Up             | 24V Up            | The peripheral voltage U <sub>P</sub>   |
| 37          | 38 | 24V Up            | 24V Up            | supplies the electronics on the         |
| 39          | 40 | SGND              | SGND              | field side.                             |

| Signal            | Description                                 |
|-------------------|---------------------------------------------|
| U <sub>EBUS</sub> | E-Bus power supply 3.3 V                    |
| GND               | E-Bus GND signal. Don't connect with 0V Up! |
| RXn+              | Positive E-Bus receive signal               |
| RXn-              | Negative E-Bus receive signal               |
| TXn+              | Positive E-Bus transmit signal              |
| TXn-              | Negative E-Bus transmit signal              |
| Clock 1+          | Clock+ output (channel 1)                   |
| Clock 1-          | Clock- output (channel 1)                   |
| Data 1+           | Data+ input (channel 1)                     |
| Data 1-           | Data- input (channel 1)                     |
| GND Sensor        | Sensor GND signal                           |
| Clock 2+          | Clock+ output (channel 2)                   |
| Clock 2-          | Clock- output (channel 2)                   |
| Data 2+           | Data+ input (channel 2)                     |
| Data 2-           | Data- input (channel 2)                     |
| NC                | Do not connect                              |
| 0V Up             | GND signal field side                       |
| 24V Up            | Power supply field side 24 V                |
| SGND              | Shield Ground                               |

Fig. 8: EJ5042-0010 - Pinout

The PCB footprint can be downloaded from the Beckhoff homepage.

Damage to devices possible!

## NOTICE

## • The pins named with "NC" must not be connected.

- Before installation, read the chapter <u>Installation of EJ modules!</u>
- Before commissioning, read the detailed description of the process data, operation modes and parameterization in the <u>EL5042</u> documentation!



The following points should be considered during design phase and installation:



### Notes for routing and installation

- The encoder supply is connected externally, e. g. via the power supply plug-in module <u>EJ9505</u>.
- The BiSS and SSI information (Clock and Data) are transmitted as differential signals. To ensure a good EMC immunity, also for long distances, shielded cables with twisted pair conductors should be used.
  - ⇒ The cable shield should be connected to earth at both channel ends and the two end devices should be always at the same reference potential.
  - ⇒ When using externally shielded cables, particular care should be paid, not to damage or to interrupt the shield itself.
  - ⇒ Shield should be connected near by the connector.
  - ⇒ Refer also to the corresponding notes of the sensor manufacturer!
- Refer to the guide lines in the <u>design guide</u> for the EtherCAT plug-in modules to ensure a proper routing of the differential signals!
- The value of each termination resistor should be equal to the cable characteristic impedance, typically 120  $\Omega$  for EIA-485 or RS-482 standard.
- Routing of the differential signals should be impedance controlled with typically 120  $\Omega$  for EIA-485 or RS-482 standard. Traces wide should be > 0.2 mm, the maximum ampacity need to be taken into account.
- To improve the EMC immunity it may be helpful to connect the two signal channels on two different connectors



## 3.4 **LEDs**

| LED No. | EJ5042-0010 |
|---------|-------------|
| Α       | RUN         |
| В       |             |
| С       |             |
|         |             |
| 1       | ENA1        |
| 3       | RX1         |
| 3       | ERR1        |
| 4       | ENA2        |
| 5       | RX2         |
| 6       | ERR2        |
| 7       |             |
| 8       |             |
| 9       |             |
| 10      |             |
| 11      |             |
| 12      |             |
| 13      |             |
| 14      |             |
| 15      |             |
| 16      |             |

Fig. 9: EJ5042-0010 - LEDs

| LED                  | Color | Display      | State                | Description                                                                                                                                                    |
|----------------------|-------|--------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN                  | green | off          | Init                 | State of the <a href="EtherCAT State Machine">EtherCAT State Machine</a> : INIT = initialization of the plug-in module                                         |
|                      |       | flashing     | •                    | State of the EtherCAT State Machine: <b>PREOP =</b> function for mailbox communication and different default settings set                                      |
|                      |       | single flash | Safe-<br>Operational | State of the EtherCAT State Machine: <b>SAFEOP</b> = verification of the <u>Sync-Manager</u> channels and the distributed clocks. Outputs remain in safe state |
|                      |       | on           | Operational          | State of the EtherCAT State Machine: <b>OP =</b> normal operating state; mailbox and process data communication are possible                                   |
|                      |       | flickering   | Bootstrap            | State of the EtherCAT State Machine: <b>BOOTSTRAP</b> = function for <u>firmware updates</u> of the plug-in module                                             |
| ENA1 (1)<br>ENA2 (4) | green | on           | -                    | Connected encoder for the corresponding channel initialized and ready for operation (Ready bit is set)                                                         |
|                      |       | off          | -                    | Connected encoder for the corresponding channel not ready for operation (Ready bit is not set)                                                                 |
| RX1 (2)<br>RX2 (5)   | green | flashes      | -                    | Module receives position values at the corresponding channel                                                                                                   |
| ERR1 (3)<br>ERR2 (6) | red   | on           | -                    | No encoder connected to the corresponding channel, or position values invalid (TxPDO bit set)                                                                  |
|                      |       | off          | _                    | No error                                                                                                                                                       |



## 4 Installation of EJ modules

## 4.1 Power supply for the EtherCAT plug-in modules

#### **↑ WARNING**

### Power supply from SELV/PELV power supply unit!

SELV/PELV circuits (Safety Extra Low Voltage, Protective Extra Low Voltage) according to IEC 61010-2-201 must be used to supply this device.

#### Notes:

- SELV/PELV circuits may give rise to further requirements from standards such as IEC 60204-1 et al, for example with regard to cable spacing and insulation.
- A SELV (Safety Extra Low Voltage) supply provides safe electrical isolation and limitation of the voltage without a connection to the protective conductor, a PELV (Protective Extra Low Voltage) supply also requires a safe connection to the protective conductor.

The signal distribution board should have a power supply designed for the maximum possible current load of the module string. Information on the current required from the E-bus supply can be found for each module in the respective documentation in section "Technical data", online and in the catalog. The power requirement of the module string is displayed in the TwinCAT System Manager.

## E-bus power supply with EJ1100 or EJ1101-0022 and EJ940x

The EJ1100 Bus Coupler supplies the connected EJ modules with the E-bus system voltage of 3.3 V. The Coupler can accommodate a load up to 2.2 A. If a higher current is required, a combination of the coupler EJ1101-0022 and the power supply units EJ9400 (2.5 A) or EJ9404 (12 A) should be used. The EJ940x power supply units can be used as additional supply modules in the module string.

Depending on the application, the following combinations for the E-bus supply are available:

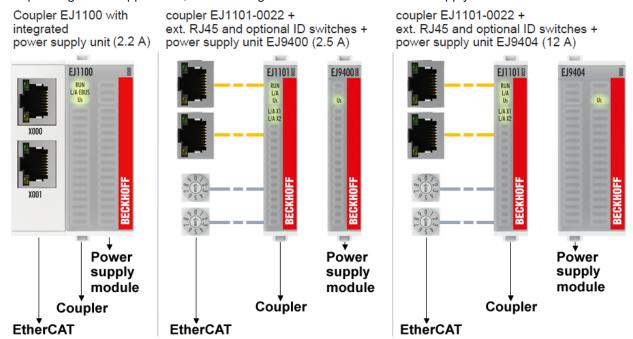



Fig. 10: E-bus power supply with EJ1100 or EJ1101-0022 + EJ940x

In the EJ1101-0022 coupler, the RJ45 connectors and optional ID switches are external and can be positioned anywhere on the signal distribution board, as required. This facilitates feeding through a housing.

The EJ940x power supply plug-in modules provide an optional reset function (see chapter Connection of the documentation for EJ9400 and EJ9404)



### E-bus power supply with CXxxxx and EK1110-004x

The Embedded PC supplies the attached EtherCAT Terminals and the EtherCAT EJ coupler

- with a supply voltage Us of 24 V<sub>DC</sub> (-15 %/+20 %). This voltage supplies the E-bus and the bus terminal electronics.
  - The CXxxxx units supply the E-bus with up to 2,000 mA E-bus current. If a higher current is required due to the attached terminals, power feed terminals or power supply plug-in modules must be used for the E-bus supply.
- with a peripheral voltage Up of 24  $V_{\text{DC}}$  to supply the field electronics.

The EK1110-004x EtherCAT EJ couplers relay the following parameters to the signal distribution board via the rear connector:

- the E-bus signals,
- the E-bus voltage U<sub>EBUS</sub> (3.3 V) and
- the peripheral voltage U<sub>P</sub> (24 V<sub>DC</sub>).



Fig. 11: PCB with Embedded PC, EK1110-0043 and EJxxxx, rear view EK1110-0043

## 4.2 Note on load voltage supply

#### **⚠ WARNING**

## Load voltage supply

Some devices permit an additional load voltage, e.g. 48 V DC, to be connected for the operation of a motor. In order to avoid stray currents on the protective conductor during operation, EN 60204-1:2018 provides for the possibility that the negative pole of the load voltage does not necessarily have to be connected to the protective conductor system (SELV).

Therefore, the load voltage supply should be designed as an SELV supply.



## 4.3 EJxxxx - dimensions

The EJ modules are compact and lightweight thanks to their design. Their volume is approx. 50% smaller than the volume of the EL terminals. A distinction is made between four different module types, depending on the width and the height:

| Module type          | Dimensions (W x H x D) | Sample in figure below                   |
|----------------------|------------------------|------------------------------------------|
| Coupler              | 44 mm x 66 mm x 55 mm  | EJ1100 (ej_44_2xrj45_coupler)            |
| Single module        | 12 mm x 66 mm x 55 mm  | EJ1809 (ej_12_16pin_code13)              |
| Double module        | 24 mm x 66 mm x 55 mm  | EJ7342 (ej_24_2x16pin_code18)            |
| Single module (long) | 12 mm x 152 mm x 55 mm | EJ1957 (ej_12_2x16pin_extended_code4747) |

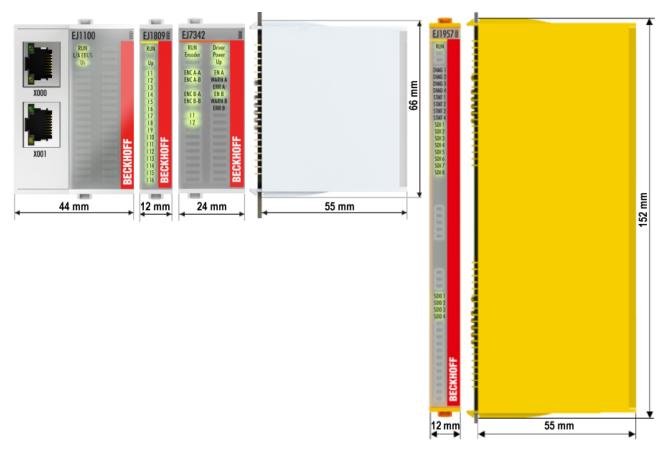



Fig. 12: EJxxxx - Dimensions

The technical drawings can be downloaded from the Beckhoff <u>homepage</u>. The drawings are named as described in the drawing below.

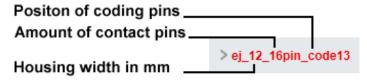



Fig. 13: Naming of the technical drawings



## 4.4 Installation positions and minimum distances

## 4.4.1 Minimum distances for ensuring installability

Note the dimensions shown in the following diagram for the design of the signal distribution board to ensure safe latching and simple assembly / disassembly of the modules.

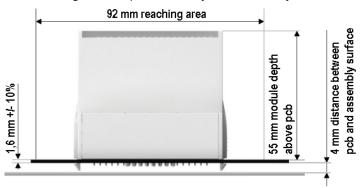



Fig. 14: Mounting distances EJ module - PCB



## Observing the reaching area



A minimum reaching area of 92 mm is required for assembly / disassembly, in order to be able to reach the mounting tabs with the fingers.

Adherence to the recommended minimum distances for ventilation (see <u>section Installation position</u> [**)** 26]) ensures an adequate reaching area.

The signal distribution board must have a thickness of 1.6 mm and a minimum distance of 4 mm from the mounting surface, in order to ensure latching of the modules on the board.



## 4.4.2 Installation positions

## **NOTICE**

## Constraints regarding installation position and operating temperature range

Please refer to the <u>technical data</u> [> 18] for the installed components to ascertain whether any restrictions regarding the mounting position and/or the operating temperature range have been specified. During installation of modules with increased thermal dissipation, ensure adequate distance above and below the modules to other components in order to ensure adequate ventilation of the modules during operation!

The standard installation position is recommended. If a different installation position is used, check whether additional ventilation measures are required.

Ensure that the specified conditions (see Technical data) are adhered to!

### **Optimum installation position (standard)**

For the optimum installation position the signal distribution board is installed horizontally, and the fronts of the EJ modules face forward (see Fig. *Recommended distances for standard installation position*). The modules are ventilated from below, which enables optimum cooling of the electronics through convection. "From below" is relative to the acceleration of gravity.

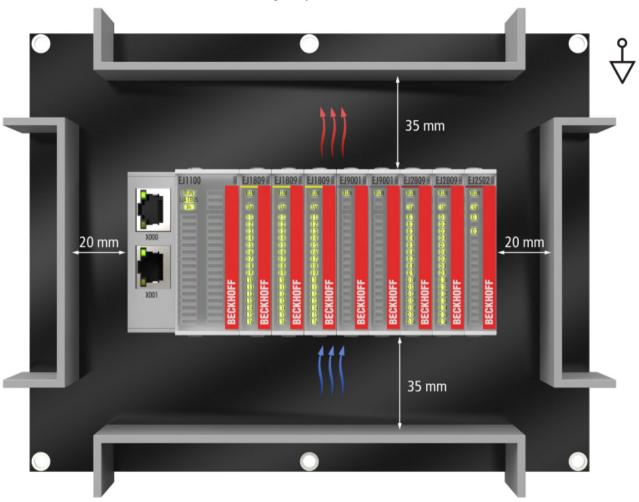
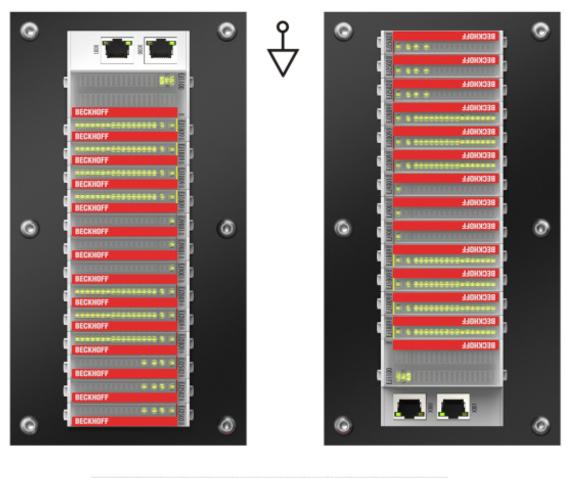



Fig. 15: Recommended distances for standard installation position


Compliance with the distances shown in Fig. Recommended distances for standard installation position is recommend. The recommended minimum distances should not be regarded as restricted areas for other components. The customer is responsible for verifying compliance with the environmental conditions described in the technical data. Additional cooling measures must be provided, if required.



## Other installation positions

All other installation positions are characterized by a different spatial position of the signal distribution board, see Fig. *Other installation positions*.

The minimum distances to ambient specified above also apply to these installation positions.



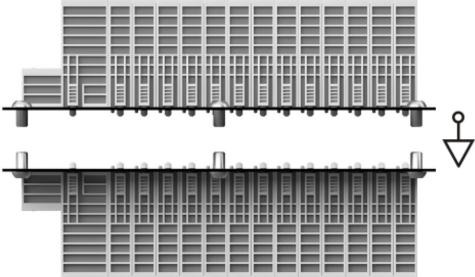



Fig. 16: Other installation positions



## 4.5 Codings

## 4.5.1 Color coding



Fig. 17: EJ modules color code; sample: EJ1809

The EJ modules are color-coded for a better overview in the control cabinet (see diagram above). The color code indicates the signal type. The following table provides an overview of the signal types with corresponding color coding.

| Signal type          | Modules | Color           |
|----------------------|---------|-----------------|
| Coupler              | EJ11xx  | No color coding |
| Digital input        | EJ1xxx  | Yellow          |
| Digital output       | EJ2xxx  | Red             |
| Analog input         | EJ3xxx  | Green           |
| Analog output        | EJ4xxx  | Blue            |
| Position measurement | EJ5xxx  | grey            |
| Communication        | EJ6xxx  | grey            |
| Motion               | EJ7xxx  | orange          |
| System               | EJ9xxx  | grey            |



## 4.5.2 Mechanical position coding

The modules have two signal-specific coding pins on the underside (see Figs. B1 and B2 below). In conjunction with the coding holes in the signal distribution board (see Figs. A1 and A2 below), the coding pins provide an option for mechanical protection against incorrect connection. This significantly reduces the risk of error during installation and service.

Couplers and placeholder modules have no coding pins.

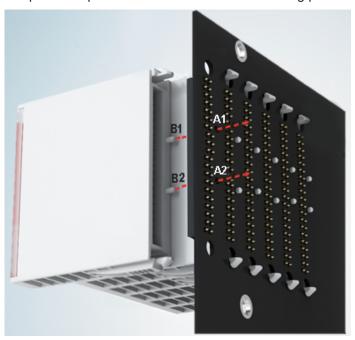



Fig. 18: Mechanical position coding with coding pins (B1 and B2) and coding holes (A1 and A2)

The following diagram shows the position of the position coding with position numbers on the left-hand side. Modules with the same signal type have the same coding. For sample, all digital input modules have the coding pins at positions one and three. There is no plug protection between modules with the same signal type. During installation the module type should therefore be verified based on the device name.

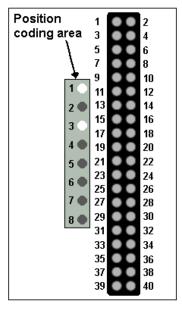



Fig. 19: Pin coding; sample: digital input modules



## 4.6 Installation on the signal distribution board

EJ modules are installed on the signal distribution board. The electrical connections between coupler and EJ modules are realized via the pin contacts and the signal distribution board.

The EJ components must be installed in a control cabinet or enclosure which must provide protection against fire hazards, environmental conditions and mechanical impact.

#### **↑ WARNING**

## Risk of injury through electric shock and damage to the device!

Bring the module system into a safe, de-energized state before starting installation, disassembly or wiring of the modules.

#### NOTICE

## Risk of damage to components through electrostatic discharge!

Observe the regulations for ESD protection.

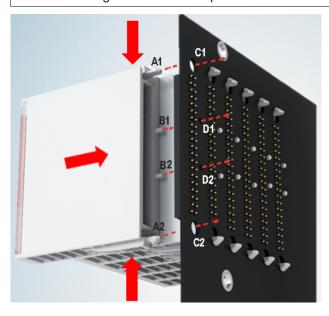



Fig. 20: Installation of EJ modules

| A1 / A2 | Latching lugs top / bottom | C1 / C2 | Mounting holes |
|---------|----------------------------|---------|----------------|
| B1 / B2 | Coding pins                | D1 / D2 | Coding holes   |

To install the modules on the signal distribution board proceed as follows:

- 1. Before the installation, ensure that the signal distribution board is securely connected to the mounting surface. Installation on an unsecured signal distribution board may result in damage to the board.
- 2. If necessary, check whether the positions of the coding pins (B) match the corresponding holes in the signal distribution board (D).
- 3. Compare the device name on the module with the information in the installation drawing.
- 4. Press the upper and the lower mounting tabs simultaneously and push the module onto the board while gently moving it up and down, until the module is latched securely.

  The required contact pressure can only be established and the maximum current carrying capacity ensured if the module is latched securely.
- 5. Use placeholder modules (EJ9001) to fill gaps in the module strand.



## **NOTICE**

- During installation ensure safe latching of the modules on the signal distribution board! The consequences of inadequate contact pressure include:
- ⇒ loss of quality of the transferred signals,
- ⇒ increased power dissipation of the contacts,
- ⇒ impairment of the service life.



## 4.7 Extension options

Three options are available for modifications and extensions of the EJ system.

- · Replacing the placeholder modules with the function modules provided for the respective slot
- Assigning function modules specified for the respective slots for the reserve slots at the end of the module string
- Linking with EtherCAT Terminals and EtherCAT Box modules via an Ethernet/EtherCAT connection

## 4.7.1 Using placeholder modules for unused slots

The EJ9001 placeholder modules are used to close temporary gaps in the module strands (see Fig. A1 below). Gaps in the module strand cause interruption in EtherCAT communication and must be equipped with placeholder modules.

In contrast to the passive terminals of the EL series, the placeholder modules actively participate in the data exchange. Several placeholder modules can therefore be connected in series, without impairing the data exchange.

Unused slots at the end of the module strand can be left as reserve slots (see Fig. B1 below).

The machine complexity is extended (extended version) by allocating unused slots (see Figs. A2 below - Exchanging placeholder modules and B2 - Assigning reserve slots) according to the specifications for the signal distribution board.

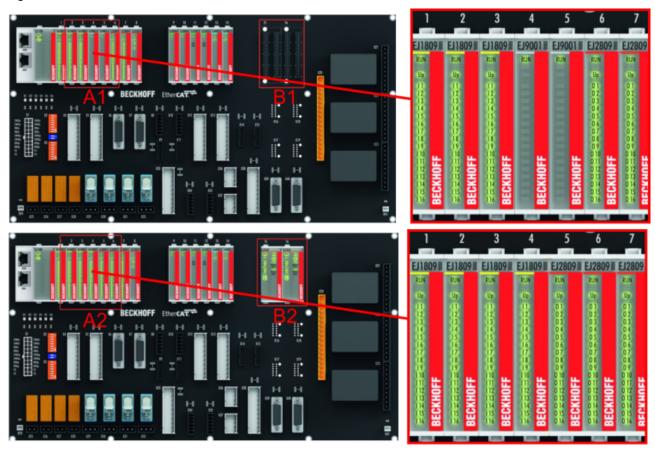



Fig. 21: Sample: Exchanging placeholder modules and assigning reserve slots

## E-bus supply

Exchange the placeholder modules with other modules changes the current input from the E-Bus.

Ensure that adequate power supply is provided.



# 4.7.2 Linking with EtherCAT Terminals and EtherCAT Box modules via an Ethernet/EtherCAT connection



Fig. 22: Example of extension via an Ethernet/EtherCAT connection



## 4.8 IPC integration

#### Connection of CX and EL terminals via the EK1110-004x EtherCAT EJ coupler

The EK1110-0043 and EK1110-0044 EtherCAT EJ couplers connect the compact DIN-rail PCs of the CX series and attached EtherCAT Terminals (ELxxxx) with the EJ modules on the signal distribution board.

The EK1110-004x are supplied from the power supply unit of the Embedded PC.

The E-bus signals and the supply voltage of the field side  $U_P$  are routed directly to the PCB via a plug connector at the rear of the EtherCAT EJ couplers.

Due to the direct coupling of the Embedded PC and the EL terminals with the EJ modules on the PCB, no EtherCAT Extension (EK1110) or EtherCAT Coupler (EJ1100) is required.

The Embedded PC can be expanded with EtherCAT Terminals that are not yet available in the EJ system, for example.



Fig. 23: Example PCB with Embedded PC, EK1110-0043 and EJxxxx, rear view EK1110-0043



## Connection of C6015 / C6017 via the EJ110x-00xx EtherCAT Coupler

Thanks to their ultra-compact design and versatile mounting options, the C6015 and C6017 IPCs are ideally suited for connection to an EJ system.

In combination with the ZS5000-0003 mounting set, it is possible to place the C6015 and C6017 IPCs compactly on the signal distribution board.

The EJ system is optimally connected to the IPC via the corresponding EtherCAT Cable (see following Fig. [A]).

The IPC can be supplied directly via the signal distribution board using the enclosed power plug (see Fig. [B] below).

## **NOTICE**



## Positioning on the signal distribution board

The dimensions and distances for placement and other details can be found in the Design Guide and the documentation for the individual components.

The figure below shows the connection of a C6015 IPC to an EJ system as an example. The components shown are schematic, to illustrate the functionality.



Fig. 24: Example for the connection of a C6015 IPC to an EJ system



## 4.9 Disassembly of the signal distribution board

## **MARNING**

## Risk of injury through electric shock and damage to the device!

Bring the module system into a safe, de-energized state before starting installation, disassembly or wiring of the modules.

Each module is secured through latching on the distribution board, which has to be released for disassembly.

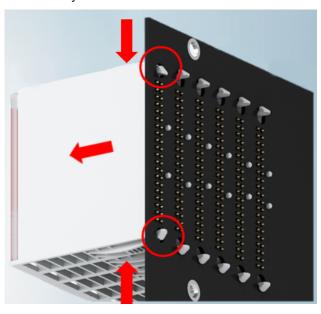



Fig. 25: Disassembly of EJ modules

To disassemble the module from the signal distribution board proceed as follows:

- 1. Before disassembly, ensure that the signal distribution board is securely connected to the mounting surface. Disassembly of an unsecured signal distribution board may result in damage to the board.
- 2. Press the upper and lower mounting tabs simultaneously and pull the module from board while gently moving it up and down.

## 4.10 Disposal



Products marked with a crossed-out wheeled bin shall not be discarded with the normal waste stream. The device is considered as waste electrical and electronic equipment. The national regulations for the disposal of waste electrical and electronic equipment must be observed.



# 5 EtherCAT basics

Please refer to the <a href="EtherCAT System Documentation">EtherCAT System Documentation</a> for the EtherCAT fieldbus basics.



# 6 Commissioning

### 6.1 Process data

# 6.1.1 Sync Manager (SM)

The extent of the process data that is made available can be changed via the "Process data" tab (see Fig. "Process data tab SM3, EJ5042-0010 (default)").

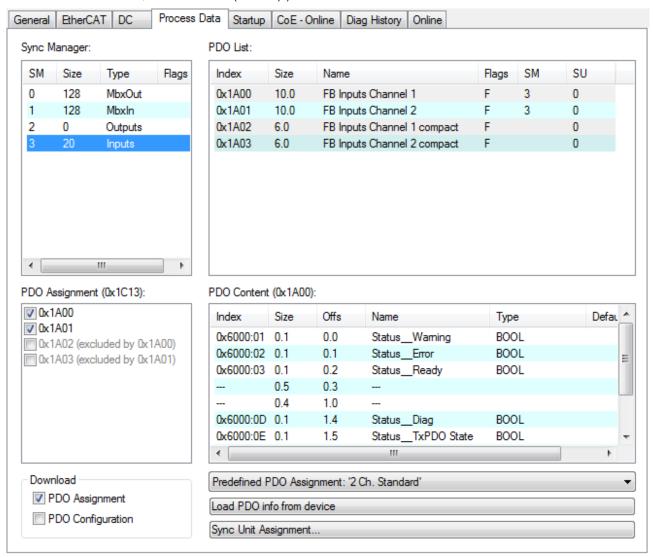



Fig. 26: Process data tab SM3, EJ5042-0010 (default)

# 6.1.2 PDO Assignment

- 1. To configure the process data, select the required Sync Manager (SM 2 or SM 3) in the "Sync Manager" field at the top left.
- 2. The process data assigned to this Sync Manager can then be switched on or off in the "PDO Assignment" box underneath.
- 3. Restarting the EtherCAT system or reloading the configuration in configuration mode (F4), causes the EtherCAT communication to restart, and the process data is transferred from the EtherCAT plug-in module.

The following PDO Assignments are available:



| SM3, PDO Assignment 0x1C13  |                 |                            |                                       |                 |  |
|-----------------------------|-----------------|----------------------------|---------------------------------------|-----------------|--|
| Index                       | Size (byte.bit) | Name                       | PDO content                           | Size (byte.bit) |  |
| 0x1A00 (default)            | 10.0            | Status_Warning             | Index <u>0x6000:01</u> [▶ <u>47]</u>  | 0.1             |  |
| FB Inputs Channel 1         |                 | Status_Error               | Index <u>0x6000:02</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_Ready               | Index <u>0x6000:03</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | [Offset]                   | -                                     | 0.5             |  |
|                             |                 | [Offset]                   | -                                     | 0.4             |  |
|                             |                 | Status_Diag                | Index <u>0x6000:0D</u> [▶ <u>47</u> ] | 0.1             |  |
|                             |                 | Status_TxPDO State         | Index <u>0x6000:0E</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_Input Cycle counter | Index <u>0x6000:0F [▶ 47]</u>         | 0.2             |  |
|                             |                 | Position                   | Index <u>0x6000:11 [▶ 47]</u>         | 8.0             |  |
| 0x1A01 (default)            | 10.0            | Status_Warning             | Index <u>0x6010:01</u> [▶ <u>47</u> ] | 0.1             |  |
| FB Inputs Channel 2         |                 | Status_Error               | Index <u>0x6010:02</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_Ready               | Index <u>0x6010:03</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | [Offset]                   | -                                     | 0.5             |  |
|                             |                 | [Offset]                   | -                                     | 0.4             |  |
|                             |                 | Status_Diag                | Index <u>0x6010:0D</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_TxPDO State         | Index <u>0x6010:0E</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_Input Cycle counter | Index <u>0x6010:0F</u> [▶ <u>47]</u>  | 0.2             |  |
|                             |                 | Position                   | Index <u>0x6010:11</u> [▶ <u>47]</u>  | 8.0             |  |
| 0x1A02                      | 6.0             | Status_Warning             | Index <u>0x6000:01 [▶ 47]</u>         | 0.1             |  |
| FB Inputs Channel 1 compact |                 | Status_Error               | Index 0x6000:02 [▶ 47]                | 0.1             |  |
| compact                     |                 | Status_Ready               | Index 0x6000:03 [▶ 47]                | 0.1             |  |
|                             |                 | [Offset]                   | -                                     | 0.5             |  |
|                             |                 | [Offset]                   | -                                     | 0.4             |  |
|                             |                 | Status_Diag                | Index <u>0x6000:0D</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_TxPDO State         | Index <u>0x6000:0E</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_Input Cycle counter | Index <u>0x6000:0F</u> [▶ <u>47]</u>  | 0.2             |  |
|                             |                 | Position                   | Index <u>0x6000:11 [▶ 47]</u>         | 4.0             |  |
| 0x1A03                      | 6.0             | Status_Warning             | Index <u>0x6010:01 [▶ 47]</u>         | 0.1             |  |
| FB Inputs Channel 2         |                 | Status_Error               | Index <u>0x6010:02</u> [▶ <u>47]</u>  | 0.1             |  |
| compact                     |                 | Status Ready               | Index 0x6010:03 [ • 47]               | 0.1             |  |
|                             |                 | [Offset]                   | -                                     | 0.5             |  |
|                             |                 | [Offset]                   | -                                     | 0.4             |  |
|                             |                 | Status_Diag                | Index <u>0x6010:0D [▶ 47]</u>         | 0.1             |  |
|                             |                 | Status_TxPDO State         | Index <u>0x6010:0E</u> [▶ <u>47]</u>  | 0.1             |  |
|                             |                 | Status_Input Cycle counter | Index 0x6010:0F [▶ 47]                | 0.2             |  |
|                             |                 | Position                   | Index 0x6010:11 [ • 47]               | 4.0             |  |



# 6.1.3 Predefined PDO Assignment

The "Predefined PDO Assignment" enables a simplified selection of the process data. The desired function is selected on the lower part of the "Process Data" tab. As a result, all necessary PDOs are automatically activated and the unnecessary PDOs are deactivated.

Four PDO assignments are available:

| Name           | SM3, PDO assignment                         |
|----------------|---------------------------------------------|
| 1 Ch. Standard | <u>0x1A00 [▶ 49]</u> (FB Inputs Channel 1)  |
| 1 Ch. Compact  | 0x1A02 [▶ 50] (FB Inputs Channel 1 compact) |
| 2 Ch. Standard | <u>0x1A01 [▶ 50]</u> (FB Inputs Channel 2)  |
| 2 Ch. Compact  | 0x1A03 [▶ 51] (FB Inputs Channel 2 compact) |

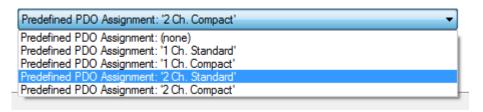



Fig. 27: Process data tab Predefined PDO Assignment, EJ5042-0010

# 6.1.4 Interpretation of process data

Following process data are provided:

| Name                | Online | Туре       | Size | >Addr | In/Out |
|---------------------|--------|------------|------|-------|--------|
| ₹ Status            |        | Status_365 | 2.0  | 51.0  | Input  |
| ₹ Warning           |        | BIT        | 0.1  | 51.0  | Input  |
| ₱ Error             |        | BIT        | 0.1  | 51.1  | Input  |
| ₱ Ready             |        | BIT        | 0.1  | 51.2  | Input  |
| 🔁 Diag              |        | BIT        | 0.1  | 52.4  | Input  |
| TxPDO State         |        | BIT        | 0.1  | 52.5  | Input  |
| Input cycle counter |        | BIT2       | 0.2  | 52.6  | Input  |
| Position            |        | ULINT      | 8.0  | 53.0  | Input  |
| ₹ Status            |        | Status_365 | 2.0  | 61.0  | Input  |
| ₱ Warning           |        | BIT        | 0.1  | 61.0  | Input  |
| ₱ Error             |        | BIT        | 0.1  | 61.1  | Input  |
| ₱ Ready             |        | BIT        | 0.1  | 61.2  | Input  |
| 🔁 Diag              |        | BIT        | 0.1  | 62.4  | Input  |
| TxPDO State         |        | BIT        | 0.1  | 62.5  | Input  |
| Input cycle counter |        | BIT2       | 0.2  | 62.6  | Input  |
| Position            |        | ULINT      | 8.0  | 63.0  | Input  |

Fig. 28: EJ5042-0010, process data

The interpretation of the process data depends on the mode (BiSS-C or SSI) see following tables.



| Name                       | Description for BiSS-C mode                                                                                                                                                                                                                            |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Status_Warning             | Status bit "Warning" is part of the BiSS-C frame and is directly communicated from the slave. The bit is active HIGH. For troubleshooting please refer to slave documentation.                                                                         |  |  |  |
| Status_Error               | Status bit "Error" is part of the BiSS-C frame and is directly communicated from the slave. The bit is active HIGH. If the error bit is HIGH, it will be also displayed in the "TxPDO State". For troubleshooting please refer to slave documentation. |  |  |  |
| Status_Ready               | In the idle state of BiSS-C communication the slave indicates his ready state with high value. Only if the ready bit is high, data transmission can be started.                                                                                        |  |  |  |
|                            | If the ready bit is LOW, please check chapter "Error handling"                                                                                                                                                                                         |  |  |  |
| Status_Diag                | Indicates that a new message is available in the "Diag History"                                                                                                                                                                                        |  |  |  |
| Status_TxPDO State         | Validity of the data of the associated TxPDO                                                                                                                                                                                                           |  |  |  |
|                            | 0 = valid<br>1 = invalid                                                                                                                                                                                                                               |  |  |  |
| Status_Input cycle counter | 2-bit counter for synchronization, is incremented only if a new value is present.                                                                                                                                                                      |  |  |  |
| Position                   | BiSS-C position value                                                                                                                                                                                                                                  |  |  |  |

| Name                       | Description for SSI mode                                                                                                                                     |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Status_Warning             | status bit "Warning" is deactivated by default in SSI mode.                                                                                                  |  |  |  |  |  |
|                            | status bits are activated (0x80n8:02 "Disable Status Bits" = FALSE), the last 2 bits of ne SSI frame are directly mapped as warning and error bit.           |  |  |  |  |  |
| Status_Error               | Status bit "Error" is deactivated by default in SSI mode.                                                                                                    |  |  |  |  |  |
|                            | If status bits are activated (0x80n8:02 "Disable Status Bits" = FALSE), the last 2 bits of the SSI frame are directly mapped as warning and error bit.       |  |  |  |  |  |
| Status_Ready               | In the idle state of SSI communication the slave indicates his ready state with high value. Only if the ready bit is HIGH, data transmission can be started. |  |  |  |  |  |
|                            | If the ready bit is low, please check chapter "Error handling"                                                                                               |  |  |  |  |  |
| Status_Diag                | Indicates that a new message is available in the "Diag History"                                                                                              |  |  |  |  |  |
| Status_TxPDO State         | Validity of the data of the associated TxPDO                                                                                                                 |  |  |  |  |  |
|                            | 0 = valid<br>1 = invalid                                                                                                                                     |  |  |  |  |  |
| Status_Input cycle counter | 2-bit counter for synchronization, is incremented only if a new value is present.                                                                            |  |  |  |  |  |
| Position                   | SSI position value                                                                                                                                           |  |  |  |  |  |



# 6.2 Parameterization

The EtherCAT plug-in module works as a BiSS-C and also as SSI master. Various parameters have to be set in the configuration data (object 0x80n0 [ \( \bullet \) 46] and object 0x80n8 [ \( \bullet \) 46]) to ensure, that the data of the slave are transmitted correctly (see chapter Parameterization as BiSS-C master [ \bullet \) 42] and chapter Parameterization as SSI master [ \bullet \) 44]).

#### 6.2.1 Parameterization as BiSS-C master

#### Parametrization of the EtherCAT plug-in module EJ5042-0010 as BiSS-C master

- BiSS-C mode (0x80n8:18)
  - in the object 0x80n8:18 Mode: BiSS-C (0x00) need to be selected
- CRC polynomial (0x80n8:11)
  - The transmission of the data is CRC-secured. The counter polynomial for CRC determination is slave specific.
  - Is the CRC transmitted inverted, the 0x80n8:03 "CRC Invert" need to be set to TRUE.
- Clock frequency (0x80n8:13)
  - Clock rate, limitations by the max. cable length need to be considered. A runtime compensation for the clock and data line is implemented, therefore the use of long cables and high data rates is possible (max. 10 MHz).
- Multiturn [Bit] (0x80n8:15)
  - Number of multiturn bits provided by the slave. If only singleturn bits are provided (e. g. linear encoder) the value can be set to 0.
- Singleturn [Bit] (0x80n8:16)
  - Number of singleturn bits provided by the slave.
- Offset LSB Bit [Bit] (0x80n8:17)
  - Right aligned offset bits (null bits) can be set, if available (slave specific). The position data is shifted by the number of the offset bits.

#### Note about the counter polynomial

1

The counter polynomial for the CRC determination is manufacturer specific. Common values are  $0x43_{hex}$  ( $67_{dec}$ ) or  $0x97_{hex}$  ( $151_{dec}$ ).

This value can be entered directly in the object 0x80n8:11 [▶ 46].

The calculation of the polynomial and the cyclical data check between master and slave are carried out automatically.

#### The BiSS-C frame structure is following:

| Offset MSB Bit (optional) | Position<br>[max. 64 Bit] |                    | Offset LSB Bit (optional)                                 |                                                       | 3 | CRC<br>[8 Bit]                   |
|---------------------------|---------------------------|--------------------|-----------------------------------------------------------|-------------------------------------------------------|---|----------------------------------|
| Not relevant              | Multiturn data            | Singleturn<br>data | Optional                                                  | Status Bits                                           |   | CRC<br>polynomial                |
|                           |                           |                    | 0x80n8:17<br>"Offset LSB Bit<br>[Bit]" (right<br>aligned) | 0x80n8:02 "Disable Status bits will not be separately |   | 0x80n8:11<br>"CRC<br>Polynomial" |



# 6.2.2 Error handling BISS-C mode

| State | Description                                  |
|-------|----------------------------------------------|
| 1     | Permanent bit state TRUE                     |
| X     | Bit state change, depend on encoder position |

| Warning Bit | Error Bit | Ready Bit | TxPDO Bit | Error description                                                   | Possible reasons                                                                         |
|-------------|-----------|-----------|-----------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 0           | 0         | 1         | 0         | No error                                                            | Encoder is connected in the right way,                                                   |
|             |           |           |           | Encoder is ready for communication                                  | communication is established                                                             |
|             |           |           |           | position value is valid                                             |                                                                                          |
| 0           | 0         | 0         | 1         | Encoder is not ready for communication or position value is invalid | Wiring error: • Encoder is not powered • Up not connected • Data lines (D+ / D-) twisted |
|             |           |           |           |                                                                     | Wrong parametrization: Invalid CRC Incorrect 0x80n0 settings                             |
|             |           |           |           |                                                                     | Communication error: • Watchdog Error                                                    |
|             |           | 1         | 1         | Encoder is ready, but position value is invalid                     | Wrong parametrization: • Invalid CRC • Incorrect 0x80n0 settings                         |
|             |           |           |           |                                                                     | Communication error: • Watchdog Error                                                    |
| 1           | 0         | X         | 0         | BiSS-C warning bit set                                              | Encoder specific warning, check manufacturer datasheet                                   |
|             | 1         | X         | 1         | BiSS-C error bit set                                                | Encoder specific error, check manufacturer datasheet                                     |
| X           | X         | Х         | Х         | Position value is invalid                                           | Wrong parametrization: • Incorrect 0x80n0 settings, check coding 0x80n0:14               |
| 1           | 1         | X         | 1         | BiSS-C error bit and BiSS-C warning bit set                         | Encoder specific error and warning, check manufacturer datasheet                         |



#### 6.2.3 Parameterization as SSI master

#### Parametrization of the EtherCAT plug-in module EJ5042-0010 as SSI master

- SSI mode (0x80n8:18)
  - ∘ in the object 0x80n8:18 the mode: SSI (0x01) need to be selected
  - CRC polynomial (0x80n8:11) is automatically set to 0
  - Status bits are automatically disabled (0x80n8:02 set to TRUE)

#### NOTICE

#### Possible impairment of devices!

If the object 0x80n8:11 "CRC polynomial" is set to "0", the data transmission is not CRC secured anymore. Therefore wrong counter values may not be detected by the encoder!

- Clock frequency (0x80n8:13)
  - Clock rate, limitations by the max. cable length need to be considered. Max. Frequency for SSI 2 MHz, slave specific
- Multiturn [Bit] (0x80n8:15)
  - Number of multiturn bits provided by the slave. If only singleturn bits are provided (e. g. linear encoder) the value can be set to 0.
- Singleturn [Bit] (0x80n8:16)
  - Number of singleturn bits provided by the slave.
- Offset LSB Bit [Bit] (0x80n8:17)
  - Right aligned offset bits (additional bits, which should be blend out of the SSI frame) can be set, if available (slave specific). The position data is shifted by the number of the offset bits.

### The SSI frame structure is following:

|                                |                                 | Offset LSB Bit (optional)                              | Error<br>[1 Bit] (optional)                                          | Warning<br>[1 Bit] (op-         |
|--------------------------------|---------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|
| Multiturn data                 | Singleturn data                 | Optional                                               | Status Bits, disabled per defau                                      |                                 |
| 0x80n8:15<br>"Multiturn [Bit]" | 0x80n8:16<br>"Singleturn [Bit]" | 0x80n8:17<br>"Offset LSB Bit [Bit]"<br>(right aligned) | 0x80n8:02 "Disable Status Bits (default for SSI mobe analyzed separa | s" = TRUE<br>de); bits will not |

Are additional bits in the SSI frame available (e. g. parity bit or power good bit), and should these bits be blended out, offset bits (0x80n8:17) can be set. The position data is than shifted by the number of the offset bits.



# 6.3 Cycle time

The minimum cycle time of the EJ5042-0010 depends on the configuration of the module.

At least with the predefined PDO assignment "1 Ch. Standard" and the default settings (BiSS-C mode, 10 MHz clock frequency), a cycle time of 100 µs can be realized.

If another configuration, than the predefined PDO assignment "1 Ch. Standard", is used, the minimum cycle time can be read out in the object 0x1C33:05 "Minimum cycle time", by set the object 0x1C33:08 command to 1.

# 6.4 EJ5042-0010 - Object description and parameterization

#### **EtherCAT XML Device Description**



The display matches that of the CoE objects from the EtherCAT XML Device Description. We recommend downloading the latest XML file from the download area of the Beckhoff website and installing it according to installation instructions.

#### **NOTICE**



#### Parameterization via the CoE list (CAN over EtherCAT)

The EtherCAT device is parameterized via the CoE - Online tab (with a double click on the respective object) or via the Process Data tab (assignment of PDOs). A detailed description can be found in the EtherCAT System-Documentation in chapter "EtherCAT subscriber configuration"

Please note the general CoE notes in the EtherCAT System Documentation in chapter "CoE-interface" when using/manipulating the CoE parameters:

- Keep a startup list if components have to be replaced
- Differentiation between online/offline dictionary,
- existence of current XML description
- use "CoE reload" for resetting changes

#### Introduction

The CoE overview contains objects for different intended applications:

- · Objects required for parameterization during commissioning:
  - Restore object [▶ 45] index 0x1011
  - Configuration data [▶ 46] index 0x80n0, 0x80n8
- · Profile-specific objects:
  - Input data [▶ 47] index 0x60n0
  - Information and diagnostic [▶ 47] data Index 0x10F3, 0x10F8, 0xA0n8
- Standard objects [▶ 47]

The following section first describes the objects required for normal operation, followed by a complete overview of missing objects.

# 6.4.1 Restore object

#### Index 1011 Restore default parameters

| Index<br>(hex) | Name                       | Meaning                                                                                                              | Data type | Flags | Default                        |
|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------|-----------|-------|--------------------------------|
| 1011:0         | Restore default parameters | Restore default parameters                                                                                           | UINT8     | RO    | 0x01 (1 <sub>dec</sub> )       |
| 1011:01        | SubIndex 001               | If this object is set to "0x64616F6C" in the set value dialog, all backup objects are reset to their delivery state. | UINT32    | RW    | 0x00000000 (0 <sub>dec</sub> ) |



# 6.4.2 Configuration data

### Index 80n0 FB Settings (for Ch.1, n = 0; Ch.2, n = 1)

| Index<br>(hex) | Name                      | Meaning                                 | Data type | Flags | Default                        |
|----------------|---------------------------|-----------------------------------------|-----------|-------|--------------------------------|
| 80n0:0         | FB Settings               | Max. subindex                           | UINT8     | RO    | 0x11 (17 <sub>dec</sub> )      |
| 80n0:01        | Invert feedback direction | TRUE: Negates the 64-bit position value | BOOLEAN   | RW    | 0x00 (0 <sub>dec</sub> )       |
| 80n0:11        | Device type               | 03: BiSS                                | UINT32    | RW    | 0x00000003 (3 <sub>dec</sub> ) |

# Index 80n8 FB BiSS-C settings (for Ch.1, n = 0; Ch.2, n = 1)

| Index<br>(hex) | Name                      | Meaning                                             | Data type | Flags | Default                   |
|----------------|---------------------------|-----------------------------------------------------|-----------|-------|---------------------------|
| 80n8:0         | FB BiSS-C settings        | Max. subindex                                       | UINT8     | RO    | 0x18 (24 <sub>dec</sub> ) |
| 80n8:01        | Invert feedback direction | FALSE: 64-bit position value                        | BOOLEAN   | RW    | 0x00 (0 <sub>dec</sub> )  |
|                |                           | TRUE: Negates the 64-bit position value             |           |       |                           |
| 80n8:02        | Disable Status Bits       | FALSE: status bits enabled                          | BOOLEAN   | RW    | 0x00 (0 <sub>dec</sub> )  |
|                |                           | TRUE: status bits disabled                          |           |       |                           |
| 80n8:03        | CRC Invert                | FALSE: CRC invert deactivated                       | BOOLEAN   | RW    | 0x01 (1 <sub>dec</sub> )  |
|                |                           | TRUE: CRC is transferred invert                     |           |       |                           |
| 80n8:11        | CRC Polynomial            | Counter polynomial for CRC determination            | INT64     | RW    | 0x00000043                |
|                |                           | 0: Transmission is not CRC-secured (slave specific) |           |       | (67 <sub>dec</sub> )      |
| 80n8:13        | Clock Frequency           | 0: 10 MHz<br>1: 5 MHZ                               | UINT8     | RW    | 0x00 (0 <sub>dec</sub> )  |
|                |                           | 2: 3.33 MHz                                         |           |       |                           |
|                |                           | 3: 2.5 MHz<br>4: 2 MHz<br>9: 1 MHz                  |           |       |                           |
|                |                           | 17: 500 kHz                                         |           |       |                           |
|                |                           | 19: 250 kHz                                         |           |       |                           |
| 80n8:14        | Coding                    | 0: Dual code active                                 | UINT8     | RW    | 0x00 (0 <sub>dec</sub> )  |
|                |                           | 1: Gray code active                                 |           |       |                           |
| 80n8:15        | Multiturn [Bit]           | Number of multiturn bits                            | UINT8     | RW    | 0x0C (12 <sub>dec</sub> ) |
| 80n8:16        | Singleturn [Bit]          | Number of singleturn bits                           | UINT8     | RW    | 0x0D (13 <sub>dec</sub> ) |
| 80n8:17        | Offset LSB Bit [Bit]      | Number of "right aligned" Offset bits               | UINT8     | RW    | 0x00 (0 <sub>dec</sub> )  |
| 80n8:18        | Mode                      | 0: BiSS-C mode                                      | UINT8     | RW    | 0x00 (0 <sub>dec</sub> )  |
|                |                           | 1: SSI mode                                         |           |       |                           |

# **NOTICE**

### Possible impairment of devices!

If the object 0x80n8:11 "CRC polynomial" is set to "0", the data transmission is not CRC secured anymore. Therefore wrong counter values may not be detected by the encoder!



# 6.4.3 Input data

### Index 60n0 FB Inputs (for Ch.1, n = 0; Ch.2, n = 1)

| Index<br>(hex) | Name                | Meaning                                                                        | Data type | Flags | Default                   |
|----------------|---------------------|--------------------------------------------------------------------------------|-----------|-------|---------------------------|
| 60n0:0         | FB Inputs Ch.(n+1)  | Max. subindex                                                                  | UINT8     | RO    | 0x11 (17 <sub>dec</sub> ) |
| 60n0:01        | Warning             | Warning bit of the BiSS-C protocol                                             | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| 60n0:02        | Error               | Error collecting bit of the BiSS-C protocol (error message 1/ error message 2) | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| 60n0:03        | Ready               | Ready for use (initialization of the encoder completed)                        | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| 60n0:0D        | Diag                | Indicates that a new message is available in the "Diag History"                | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| 60n0:0E        | TxPDO State         | Validity of the data of the associated TxPDO  0 = valid  1 = invalid           | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| 60n0:0F        | Input cycle counter | 2-bit counter for synchronization (incremented only if a new value is present) | BIT2      | RO    | 0x00 (0 <sub>dec</sub> )  |
| 60n0:11        | Position            | BiSS-C position value                                                          | UINT64    | RO    | 0x0                       |

# 6.4.4 Diagnostic data

# **Index 10F3 Diagnosis History**

| Index<br>(hex) | Name                           | Meaning                                                                   | Data type            | Flags | Default                    |
|----------------|--------------------------------|---------------------------------------------------------------------------|----------------------|-------|----------------------------|
| 10F3:0         | Diagnosis History              | Max. Subindex                                                             | UINT8                | RO    | 0x37 (55 <sub>dec</sub> )  |
| 10F3:01        | Maximum Messages               | Maximum number of stored messages. A maximum of 50 messages can be stored | UINT8                | RO    | 0x00 (0 <sub>dec</sub> )   |
| 10F3:02        | Newest Message                 | Subindex of the latest message                                            | UINT8                | RO    | 0x00 0 <sub>dec</sub> )    |
| 10F3:03        | Newest Acknowledged<br>Message | Subindex of the last confirmed message                                    | UINT8                | RO    | 0x00 (0 <sub>dec</sub> )   |
| 10F3:04        | New Message available          | Indicates that a new message is available                                 | BOOLEAN              | RO    | 0x00 (0 <sub>dec</sub> )   |
| 10F3:05        | Flags                          | not used                                                                  | UINT16               | RO    | 0x0000 (0 <sub>dec</sub> ) |
| 10F3:06        | Diagnosis Message 001          | Message 1                                                                 | OCTET-<br>STRING[28] | RO    | {0}                        |
|                |                                |                                                                           |                      |       |                            |
| 10F3:37        | Diagnosis Message 050          | Message 50                                                                | OCTET-<br>STRING[28] | RO    | {0}                        |

#### **Index 10F8 Actual Time Stamp**

| Index<br>(hex) | Name              | Meaning   | Data type | Flags | Default |
|----------------|-------------------|-----------|-----------|-------|---------|
| 10F8:0         | Actual Time Stamp | Timestamp | UINT64    | RO    |         |

# Index A0n8 FB BiSS-C Diag data (for Ch.1, n = 0; Ch.2, n = 1)

| Index<br>(hex) | Name                           | Meaning                                     | Data type | Flags | Default                   |
|----------------|--------------------------------|---------------------------------------------|-----------|-------|---------------------------|
| A0n8:0         | FB BiSS Diag data<br>Ch. (n+1) | Max. Subindex                               | UINT8     | RO    | 0x11 (17 <sub>dec</sub> ) |
| A0n8:02        | Error                          | Error occured                               | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| A0n8:03        | SCD Error                      | Sync Data Error occurred                    | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| A0n8:05        | Data valid                     | Valid data present                          | BOOLEAN   | RO    | 0x00 (0 <sub>dec</sub> )  |
| A0n8:11        | Data raw value                 | Position value without inversion and offset | UINT64    | RO    | 0x0                       |

# 6.4.5 Standard objects (0x1000-0x1FFF)

The standard objects have the same meaning for all EtherCAT slaves.



# Index 1000 Device type

| Index<br>(hex) | Name        | Meaning                                                                                                                                                               | Data type | Flags | Default                                  |
|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------------------------------------------|
| 1000:0         | Device type | Device type of the EtherCAT slave: The Lo-Word contains the CoE profile used (5001). The Hi-Word contains the module profile according to the modular device profile. | UINT32    | RO    | 0x02011389<br>(33624969 <sub>dec</sub> ) |

#### Index 1008 Device name

| Index<br>(hex) | Name        | Meaning                           | Data type | Flags | Default     |
|----------------|-------------|-----------------------------------|-----------|-------|-------------|
| 1008:0         | Device name | Device name of the EtherCAT slave | STRING    | RO    | EJ5042-0010 |

### Index 1009 Hardware version

| Index<br>(hex) | Name             | Meaning                                | Data type | Flags | Default |
|----------------|------------------|----------------------------------------|-----------|-------|---------|
| 1009:0         | Hardware version | Hardware version of the EtherCAT slave | STRING    | RO    | 00      |

#### **Index 100A Software version**

| Index<br>(hex) | Name             | Meaning                                | Data type | Flags | Default |
|----------------|------------------|----------------------------------------|-----------|-------|---------|
| 100A:0         | Software version | Firmware version of the EtherCAT slave | STRING    | RO    | 01      |

# **Index 1018 Identity**

| Index<br>(hex) | Name          | Meaning                                                                                                                                                                                                               | Data type | Flags | Default                                   |
|----------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------------------------------------------|
| 1018:0         | Identity      | Information for identifying the slave                                                                                                                                                                                 | UINT8     | RO    | 0x04 (4 <sub>dec</sub> )                  |
| 1018:01        | Vendor ID     | Vendor ID of the EtherCAT slave                                                                                                                                                                                       | UINT32    | RO    | 0x00000002 (2 <sub>dec</sub> )            |
| 1018:02        | Product code  | Product code of the EtherCAT slave                                                                                                                                                                                    | UINT32    | RO    | 0x13B22852<br>(330442834 <sub>dec</sub> ) |
| 1018:03        | Revision      | Revision number of the EtherCAT slave; the Low Word (bit 0-15) indicates the special terminal number, the High Word (bit 16-31) refers to the device description                                                      | UINT32    | RO    | 0x0000000 (0 <sub>dec</sub> )             |
| 1018:04        | Serial number | Serial number of the EtherCAT slave; the Low Byte (bit 0-7) of the Low Word contains the year of production, the High Byte (bit 8-15) of the Low Word contains the week of production, the High Word (bit 16-31) is 0 | UINT32    | RO    | 0x00000000 (0 <sub>dec</sub> )            |

# Index 10F0 Backup parameter handling

| Index<br>(hex) | Name     | Meaning                                                           | Data type | Flags | Default                        |
|----------------|----------|-------------------------------------------------------------------|-----------|-------|--------------------------------|
| 10F0:0         | ' '      | Information for standardized loading and saving of backup entries | UINT8     | RO    | 0x01 (1 <sub>dec</sub> )       |
| 10F0:01        | Checksum | Checksum across all backup entries of the EtherCAT slave          | UINT32    | RO    | 0x00000000 (0 <sub>dec</sub> ) |

# Index 1800 FB TxPDO-Par Inputs Ch.1

| Index<br>(hex) | Name                        | Meaning                                                                                                  | Data type           | Flags | Default                  |
|----------------|-----------------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|
| 1800:0         | FB TxPDO-Par Inputs<br>Ch.1 | PDO parameter TxPDO 1                                                                                    | UINT8               | RO    | 0x06 (6 <sub>dec</sub> ) |
| 1800:06        | Exclude TxPDOs              | Specifies the TxPDOs (index of TxPDO mapping objects) that must not be transferred together with TxPDO 1 | OCTET-<br>STRING[2] | RO    | 02 1A                    |



# Index 1801 FB TxPDO-Par Inputs Ch.2

| Index<br>(hex) | Name                        | Meaning                                                                                                  | Data type           | Flags | Default                  |
|----------------|-----------------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|
| 1801:0         | FB TxPDO-Par Inputs<br>Ch.2 | PDO parameter TxPDO 1                                                                                    | UINT8               | RO    | 0x06 (6 <sub>dec</sub> ) |
| 1801:06        | I .                         | Specifies the TxPDOs (index of TxPDO mapping objects) that must not be transferred together with TxPDO 1 | OCTET-<br>STRING[2] | RO    | 03 1A                    |

### Index 1802 FB TxPDO-Par Inputs Ch.1 compact

| Index<br>(hex) | Name                                | Meaning                                                                                                  | Data type           | Flags | Default                  |
|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|
| 1              | FB TxPDO-Par Inputs<br>Ch.1 compact | PDO parameter TxPDO 3                                                                                    | UINT8               | RO    | 0x06 (6 <sub>dec</sub> ) |
| 1802:06        |                                     | Specifies the TxPDOs (index of TxPDO mapping objects) that must not be transferred together with TxPDO 3 | OCTET-<br>STRING[2] | RO    | 00 1A                    |

# Index 1803 FB TxPDO-Par Inputs Ch.2 compact

| Index<br>(hex) | Name                                | Meaning                                                                                                  | Data type           | Flags | Default                  |
|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|
| 1803:0         | FB TxPDO-Par Inputs<br>Ch.1 compact | PDO parameter TxPDO 3                                                                                    | UINT8               | RO    | 0x06 (6 <sub>dec</sub> ) |
| 1803:06        |                                     | Specifies the TxPDOs (index of TxPDO mapping objects) that must not be transferred together with TxPDO 3 | OCTET-<br>STRING[2] | RO    | 01 1A                    |

# Index 1A00 FB TxPDO-Map Inputs Ch.1

| Index<br>(hex) | Name                        | Meaning                                                                                 | Data type | Flags | Default                  |  |
|----------------|-----------------------------|-----------------------------------------------------------------------------------------|-----------|-------|--------------------------|--|
| 1A00:0         | FB TxPDO-Map Inputs<br>Ch.1 | p Inputs PDO Mapping TxPDO 1 UI                                                         |           | RO    | 0x09 (9 <sub>dec</sub> ) |  |
| 1A00:01        | SubIndex 001                | 1. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x01 (Warning))             | UINT32    | RO    | 0x6000:01, 1             |  |
| 1A00:02        | SubIndex 002                | 2. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x02 (Error))               | UINT32    | RO    | 0x6000:02, 1             |  |
| 1A00:03        | SubIndex 003                | 3. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x03 (Ready))               | UINT32    | RO    | 0x6000:03, 1             |  |
| 1A00:04        | SubIndex 004                | 4. PDO Mapping entry (5 bits align)                                                     | UINT32    | RO    | 0x0000:00, 5             |  |
| 1A00:05        | SubIndex 005                | 5. PDO Mapping entry (4 bits align)                                                     | UINT32    | RO    | 0x0000:00, 4             |  |
| 1A00:06        | SubIndex 006                | 6. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x0D (Diag))                | UINT32    | RO    | 0x6000:0D, 1             |  |
| 1A00:07        | SubIndex 007                | 7. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x0E (TxPDO State))         | UINT32    | RO    | 0x6000:0E, 1             |  |
| 1A00:08        | SubIndex 008                | 8. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x0F (Input cycle counter)) | UINT32    | RO    | 0x6000:0F, 2             |  |
| 1A00:09        | SubIndex 009                | 9. PDO Mapping entry (object 0x6000 (FB Inputs Ch.1), entry 0x11 (Position))            | UINT32    | RO    | 0x6000:11, 64            |  |



# Index 1A01 FB TxPDO-Map Inputs Ch.2

| Index (hex) Name |                             | Meaning                                                                                 | Data type | Flags | Default                  |  |
|------------------|-----------------------------|-----------------------------------------------------------------------------------------|-----------|-------|--------------------------|--|
| 1A01:0           | FB TxPDO-Map Inputs<br>Ch.1 | PDO Mapping TxPDO 2                                                                     | UINT8     | RO    | 0x09 (9 <sub>dec</sub> ) |  |
| 1A01:01          | SubIndex 001                | 1. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x01 (Warning))             | UINT32    | RO    | 0x6010:01, 1             |  |
| 1A01:02          | SubIndex 002                | 2. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x02 (Error))               | UINT32    | RO    | 0x6010:02, 1             |  |
| 1A01:03          | SubIndex 003                | 3. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x03 (Ready))               |           | RO    | 0x6010:03, 1             |  |
| 1A01:04          | SubIndex 004                | 4. PDO Mapping entry (5 bits align)                                                     | UINT32    | RO    | 0x0000:00, 5             |  |
| 1A01:05          | SubIndex 005                | 5. PDO Mapping entry (4 bits align)                                                     | UINT32    | RO    | 0x0000:00, 4             |  |
| 1A01:06          | SubIndex 006                | 6. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0D (Diag))                | UINT32    | RO    | 0x6010:0D, 1             |  |
| 1A01:07          | SubIndex 007                | 7. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0E (TxPDO State))         | UINT32    | RO    | 0x6010:0E, 1             |  |
| 1A01:08          | SubIndex 008                | 8. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0F (Input cycle counter)) | UINT32    | RO    | 0x6010:0F, 2             |  |
| 1A01:09          | SubIndex 009                | 9. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x11 (Position))            | UINT32    | RO    | 0x6010:11, 64            |  |

# Index 1A02 FB TxPDO-Map Inputs Ch.1 compact

| Index<br>(hex) | Name                                | Meaning                                                                                 | Data type | Flags | Default                  |
|----------------|-------------------------------------|-----------------------------------------------------------------------------------------|-----------|-------|--------------------------|
| 1A02:0         | FB TxPDO-Map Inputs<br>Ch.1 compact | PDO Mapping TxPDO 3                                                                     | UINT8     | RO    | 0x09 (9 <sub>dec</sub> ) |
| 1A02:01        | SubIndex 001                        | 1. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x01 (Warning))             | UINT32    | RO    | 0x6000:01, 1             |
| 1A02:02        | SubIndex 002                        | 2. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x02 (Error))               | UINT32    | RO    | 0x6000:02, 1             |
| 1A02:03        | SubIndex 003                        | 3. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x03 (Ready))               | UINT32    | RO    | 0x6000:03, 1             |
| 1A02:04        | SubIndex 004                        | 4. PDO Mapping entry (5 bits align)                                                     | UINT32    | RO    | 0x0000:00, 5             |
| 1A02:05        | SubIndex 005                        | 5. PDO Mapping entry (4 bits align)                                                     | UINT32    | RO    | 0x0000:00, 4             |
| 1A02:06        | SubIndex 006                        | 6. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0D (Diag))                | UINT32    | RO    | 0x6000:0D, 1             |
| 1A02:07        | SubIndex 007                        | 7. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0E (TxPDO State))         | UINT32    | RO    | 0x6000:0E, 1             |
| 1A02:08        | SubIndex 008                        | 8. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0F (Input cycle counter)) | UINT32    | RO    | 0x6000:0F, 2             |
| 1A02:09        | SubIndex 009                        | 9. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x11 (Position))            | UINT32    | RO    | 0x6000:11, 32            |



# Index 1A03 FB TxPDO-Map Inputs Ch.2 compact

| Index<br>(hex) | Name                                | Meaning                                                                                 |        | Flags | Default                  |
|----------------|-------------------------------------|-----------------------------------------------------------------------------------------|--------|-------|--------------------------|
| 1A03:0         | FB TxPDO-Map Inputs<br>Ch.2 compact | PDO Mapping TxPDO 4                                                                     | UINT8  | RO    | 0x09 (9 <sub>dec</sub> ) |
| 1A03:01        | SubIndex 001                        | 1. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x01 (Warning))             | UINT32 | RO    | 0x6010:01, 1             |
| 1A03:02        | SubIndex 002                        | 2. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x02 (Error))               | UINT32 | RO    | 0x6010:02, 1             |
| 1A03:03        | SubIndex 003                        | 3. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x03 (Ready))               | UINT32 | RO    | 0x6010:03, 1             |
| 1A03:04        | SubIndex 004                        | 4. PDO Mapping entry (5 bits align)                                                     | UINT32 | RO    | 0x0000:00, 5             |
| 1A03:05        | SubIndex 005                        | 5. PDO Mapping entry (4 bits align)                                                     | UINT32 | RO    | 0x0000:00, 4             |
| 1A03:06        | SubIndex 006                        | 6. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0D (Diag))                | UINT32 | RO    | 0x6010:0D, 1             |
| 1A03:07        | SubIndex 007                        | 7. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0E (TxPDO State))         | UINT32 | RO    | 0x6010:0E, 1             |
| 1A03:08        | SubIndex 008                        | 8. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x0F (Input cycle counter)) | UINT32 | RO    | 0x6010:0F, 2             |
| 1A03:09        | SubIndex 009                        | 9. PDO Mapping entry (object 0x6010 (FB Inputs Ch.2), entry 0x11 (Position))            | UINT32 | RO    | 0x6010:11, 32            |

# Index 1C00 Sync manager type

| Index<br>(hex) | Name              | Meaning                                                   | Data type | Flags | Default                  |
|----------------|-------------------|-----------------------------------------------------------|-----------|-------|--------------------------|
| 1C00:0         | Sync manager type | Using the Sync Managers                                   | UINT8     | RO    | 0x04 (4 <sub>dec</sub> ) |
| 1C00:01        | SubIndex 001      | Sync-Manager Type Channel 1: Mailbox Write                | UINT8     | RO    | 0x01 (1 <sub>dec</sub> ) |
| 1C00:02        | SubIndex 002      | Sync-Manager Type Channel 2: Mailbox Read                 | UINT8     | RO    | 0x02 (2 <sub>dec</sub> ) |
| 1C00:03        | SubIndex 003      | Sync-Manager Type Channel 3: Process Data Write (Outputs) | UINT8     | RO    | 0x03 (3 <sub>dec</sub> ) |
| 1C00:04        | SubIndex 004      | Sync-Manager Type Channel 4: Process Data Read (Inputs)   | UINT8     | RO    | 0x04 (4 <sub>dec</sub> ) |

# Index 1C12 RxPDO assign

| Index<br>(hex) | Name         | Meaning            | Data type | Flags | Default                  |
|----------------|--------------|--------------------|-----------|-------|--------------------------|
| 1C12:0         | RxPDO assign | PDO Assign Outputs | UINT8     | RW    | 0x00 (0 <sub>dec</sub> ) |

# Index 1C13 TxPDO assign

| Index<br>(hex) | Name         | Meaning                                                                        | Data type | Flags | Default                       |
|----------------|--------------|--------------------------------------------------------------------------------|-----------|-------|-------------------------------|
| 1C13:0         | TxPDO assign | PDO Assign Inputs                                                              | UINT8     | RO    | 0x02 (2 <sub>dec</sub> )      |
| 1C13:01        | SubIndex 001 | 1. allocated TxPDO (contains the index of the associated TxPDO mapping object) | UINT16    | RO    | 0x1A00 (6656 <sub>dec</sub> ) |
| 1C13:02        | SubIndex 002 | 2. allocated TxPDO (contains the index of the associated TxPDO mapping object) | UINT16    | RO    | 0x1A01 (6657 <sub>dec</sub> ) |



# Index 1C33 SM input parameter

| Index<br>(hex) | Name                    | Meaning                                                                                                                                              | Data type              | Flags | Default                                 |
|----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-----------------------------------------|
| 1C33:0         | SM input parameter      | Synchronization parameters for the inputs                                                                                                            | UINT8                  | RO    | 0x20 (32 <sub>dec</sub> )               |
| 1C33:01        | Sync mode               | Current synchronization mode:                                                                                                                        | UINT16                 | RW    | 0x00001 (1 <sub>dec</sub> )             |
|                |                         | 0: Free Run                                                                                                                                          |                        |       |                                         |
|                |                         | 1: Synchron with SM 3 Event (no outputs available)                                                                                                   |                        |       |                                         |
|                |                         | 2: DC - Synchron with SYNC0 Event                                                                                                                    |                        |       |                                         |
|                |                         | 3: DC - Synchron with SYNC1 Event                                                                                                                    |                        |       |                                         |
|                |                         | 34: Synchron with SM 2 Event (outputs available)                                                                                                     |                        |       |                                         |
| 1C33:02        | Cycle time              | Cycle time (in ns):                                                                                                                                  | UINT32                 | RW    | 0x000F4240                              |
|                |                         | Free Run: Cycle time of the local timer                                                                                                              |                        |       | (1000000 <sub>dec</sub> )               |
|                |                         | Synchron with SM 2 Event: Master cycle time                                                                                                          |                        |       |                                         |
|                |                         | DC mode: SYNC0/SYNC1 Cycle Time                                                                                                                      |                        |       |                                         |
| 1C33:03        | Shift time              | Time between SYNC0 event and reading of the inputs (in ns, only DC mode)                                                                             | UINT32                 | RO    | 0x0000000 (0 <sub>dec</sub> )           |
| 1C33:04        | Sync modes supported    | Supported synchronization modes:                                                                                                                     | UINT16                 | RO    | 0x0807 (2055 <sub>dec</sub> )           |
|                |                         | Bit 0: free run is supported                                                                                                                         |                        |       |                                         |
|                |                         | Bit 1: Synchron with SM 2 Event is supported (outputs available)                                                                                     |                        |       |                                         |
|                |                         | Bit 1: Synchron with SM 3 Event is supported (no outputs available)                                                                                  |                        |       |                                         |
|                |                         | Bit 2-3 = 01: DC mode is supported                                                                                                                   |                        |       |                                         |
|                |                         | Bit 4-5 = 01: Input Shift through local event (outputs available)                                                                                    |                        |       |                                         |
|                |                         | Bit 4-5 = 10: Input Shift with SYNC1 Event (no outputs available)                                                                                    |                        |       |                                         |
|                |                         | Bit 14 = 1: dynamic times (measurement through<br>writing of 0x1C33:08)                                                                              |                        |       |                                         |
| 1C33:05        | Minimum cycle time      | Minimum cycle time (in ns)                                                                                                                           | UINT32                 | RO    | 0x000186A00<br>(100000 <sub>dec</sub> ) |
| 1C33:06        | Calc and copy time      | Time between reading of the inputs and availability of the inputs for the master (in ns, only DC mode)                                               | UINT32                 | RO    | 0x000186A00<br>(100000 <sub>dec</sub> ) |
| 1C33:07        | Minimum delay time      | Minimum time between Sync-1 Event and reading of the inputs (in ns, onla DC mode)                                                                    | UINT32                 | RO    | 0x0000000 (0 <sub>dec</sub> )           |
| 1C33:08        | Command                 | With this entry the real required process data provision time can be measured.                                                                       | UINT16                 | RW    | 0x0000 (0 <sub>dec</sub> )              |
|                |                         | 0: Measurement of the local cycle time is stopped                                                                                                    |                        |       |                                         |
|                |                         | 1: Measurement of the local cycle time is started                                                                                                    |                        |       |                                         |
|                |                         | The entries 0x1C33:03, 0x1C33:06, 0x1C33:09 are updated with the maximum measured values. For a subsequent measurement the measured values are reset |                        |       |                                         |
| 1C33:09        | Maximum Delay time      | Time between SYNC1 event and reading of the inputs (in ns, only DC mode)                                                                             | n UINT32 RO 0x00000000 |       | 0x0000000 (0 <sub>dec</sub> )           |
| 1C33:0B        | SM event missed counter | Number of missed SM events in OPERATIONAL (DC mode only)                                                                                             |                        | RO    | 0x0000 (0 <sub>dec</sub> )              |
| 1C33:0C        | Cycle exceeded counter  | Inter Number of occasions the cycle time was exceeded in OPERATIONAL (cycle was not completed in time or the next cycle began too early)             |                        | RO    | 0x0000 (0 <sub>dec</sub> )              |
| 1C33:0D        | Shift too short counter | Number of occasions that the interval between SYNC0 and SYNC1 event was too short (DC mode only)                                                     | UINT16                 | RO    | 0x0000 (0 <sub>dec</sub> )              |
| 1C33:20        | Sync error              | The synchronization was not correct in the last cycle (outputs were output too late; DC mode only)                                                   |                        | RO    | 0x00 (0 <sub>dec</sub> )                |



# 7 Diagnostics - basic principles of diag messages

DiagMessages designates a system for the transmission of messages from the EtherCAT Slave to the EtherCAT Master/TwinCAT. The messages are stored by the device in its own CoE under 0x10F3 and can be read by the application or the System Manager. An error message referenced via a code is output for each event stored in the device (warning, error, status change).

#### **Definition**

The *DiagMessages* system is defined in the ETG (<a href="EtherCAT Technology Group">EtherCAT Technology Group</a>) in the guideline ETG.1020, chapter 13 "Diagnosis handling". It is used so that pre-defined or flexible diagnostic messages can be conveyed from the EtherCAT Slave to the Master. In accordance with the ETG, the process can therefore be implemented supplier-independently. Support is optional. The firmware can store up to 250 DiagMessages in its own CoE.

Each DiagMessage consists of

- · Diag Code (4-byte)
- Flags (2-byte; info, warning or error)
- · Text ID (2-byte; reference to explanatory text from the ESI/XML)
- Timestamp (8-byte, local slave time or 64-bit Distributed Clock time, if available)
- · Dynamic parameters added by the firmware

The DiagMessages are explained in text form in the ESI/XML file belonging to the EtherCAT device: on the basis of the Text ID contained in the DiagMessage, the corresponding plain text message can be found in the languages contained in the ESI/XML. In the case of Beckhoff products these are usually German and English.

Via the entry NewMessagesAvailable the user receives information that new messages are available.

DiagMessages can be confirmed in the device: the last/latest unconfirmed message can be confirmed by the user.

In the CoE both the control entries and the history itself can be found in the CoE object 0x10F3:

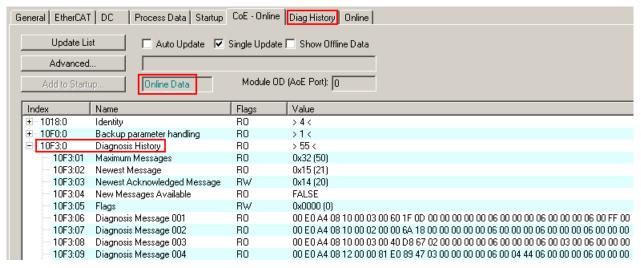



Fig. 29: DiagMessages in the CoE

The subindex of the latest *DiagMessage* can be read under 0x10F3:02.



#### Support for commissioning



The DiagMessages system is to be used above all during the commissioning of the plant. The diagnostic values e.g. in the StatusWord of the device (if available) are helpful for online diagnosis during the subsequent continuous operation.



#### **TwinCAT System Manager implementation**

From TwinCAT 2.11 DiagMessages, if available, are displayed in the device's own interface. Operation (collection, confirmation) also takes place via this interface.

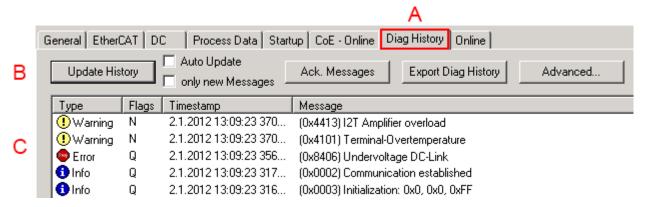



Fig. 30: Implementation of the DiagMessage system in the TwinCAT System Manager

The operating buttons (B) and the history read out (C) can be seen on the Diag History tab (A). The components of the message:

- · Info/Warning/Error
- Acknowledge flag (N = unconfirmed, Q = confirmed)
- Time stamp
- Text ID
- Plain text message according to ESI/XML data

The meanings of the buttons are self-explanatory.

#### DiagMessages within the ADS Logger/Eventlogger

From TwinCAT 3.1 build 4022 onwards, DiagMessages sent by the terminal are shown by the TwinCAT ADS Logger. Given that DiagMessages are represented IO- comprehensive at one place, commissioning will be simplified. In addition, the logger output could be stored into a data file – hence DiagMessages are available long-term for analysis.

DiagMessages are actually only available locally in CoE 0x10F3 in the terminal and can be read out manually if required, e.g. via the DiagHistory mentioned above.

In the latest developments, the EtherCAT Terminals are set by default to report the presence of a DiagMessage as emergency via EtherCAT; the event logger can then retrieve the DiagMessage. The function is activated in the terminal via 0x10F3:05, so such terminals have the following entry in the StartUp list by default:

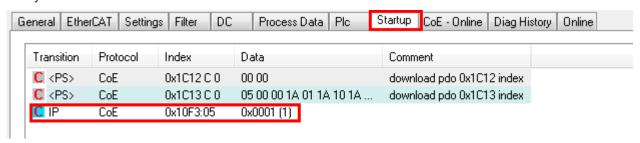



Fig. 31: Startup List

If the function is to be deactivated because, for example, many messages come in or the EventLogger is not used, the StartUp entry can be deleted or set to 0. The value can then be set back to 1 later from the PLC via CoE access if required.



#### Reading messages into the PLC

- In preparation -

#### Interpretation

#### Time stamp

The time stamp is obtained from the local clock of the terminal at the time of the event. The time is usually the distributed clock time (DC) from register x910.

Please note: When EtherCAT is started, the DC time in the reference clock is set to the same time as the local IPC/TwinCAT time. From this moment the DC time may differ from the IPC time, since the IPC time is not adjusted. Significant time differences may develop after several weeks of operation without a EtherCAT restart. As a remedy, external synchronization of the DC time can be used, or a manual correction calculation can be applied, as required: The current DC time can be determined via the EtherCAT master or from register x901 of the DC slave.

#### Structure of the Text ID

The structure of the MessageID is not subject to any standardization and can be supplier-specifically defined. In the case of Beckhoff EtherCAT devices (EL, EP) it usually reads according to **xyzz**:

| x             | у                | zz           |
|---------------|------------------|--------------|
| 0: Systeminfo | 0: System        | Error number |
| 2: reserved   | 1: General       |              |
| 1: Info       | 2: Communication |              |
| 4: Warning    | 3: Encoder       |              |
| 8: Error      | 4: Drive         |              |
|               | 5: Inputs        |              |
|               | 6: I/O general   |              |
|               | 7: reserved      |              |

Example: Message 0x4413 --> Drive Warning Number 0x13

#### **Overview of text IDs**

Specific text IDs are listed in the device documentation.



| Text ID | Туре        | Place         | Text Message                                                                  | Additional comment                                                                                                                                                       |
|---------|-------------|---------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0001  | Information | System        | No error                                                                      | No error                                                                                                                                                                 |
| 0x0002  | Information | System        | Communication established                                                     | Connection established                                                                                                                                                   |
| 0x0003  | Information | System        | Initialization: 0x%X, 0x%X, 0x%X                                              | General information; parameters depend on event. See device documentation for interpretation.                                                                            |
| 0x1000  | Information | System        | Information: 0x%X, 0x%X, 0x%X                                                 | General information; parameters depend on event. See device documentation for interpretation.                                                                            |
| 0x1012  | Information | System        | EtherCAT state change Init - PreOp                                            |                                                                                                                                                                          |
| 0x1021  | Information | System        | EtherCAT state change PreOp - Init                                            |                                                                                                                                                                          |
| 0x1024  | Information | System        | EtherCAT state change PreOp - Safe-Op                                         |                                                                                                                                                                          |
| 0x1042  | Information | System        | EtherCAT state change SafeOp - PreOp                                          |                                                                                                                                                                          |
| 0x1048  | Information | System        | EtherCAT state change SafeOp - Op                                             |                                                                                                                                                                          |
| 0x1084  | Information | System        | EtherCAT state change Op -<br>SafeOp                                          |                                                                                                                                                                          |
| 0x1100  | Information | General       | Detection of operation mode completed: 0x%X, %d                               | Detection of the mode of operation ended                                                                                                                                 |
| 0x1135  | Information | General       | Cycle time o.k.: %d                                                           | Cycle time OK                                                                                                                                                            |
| 0x1157  | Information | General       | Data manually saved (ldx: 0x%X, Subldx: 0x%X)                                 | Data saved manually                                                                                                                                                      |
| 0x1158  | Information | General       | Data automatically saved (ldx: 0x%X, Subldx: 0x%X)                            | Data saved automatically                                                                                                                                                 |
| 0x1159  | Information | General       | Data deleted (ldx: 0x%X, Subldx: 0x%X)                                        | Data deleted                                                                                                                                                             |
| 0x117F  | Information | General       | Information: 0x%X, 0x%X, 0x%X                                                 | Information                                                                                                                                                              |
| 0x1201  | Information | Communication | Communication re-established                                                  | Communication to the field side restored<br>This message appears, for example, if the voltage was<br>removed from the power contacts and re-applied during<br>operation. |
| 0x1300  | Information | Encoder       | Position set: %d, %d                                                          | Position set - StartInputhandler                                                                                                                                         |
| 0x1303  | Information | Encoder       | Encoder Supply ok                                                             | Encoder power supply unit OK                                                                                                                                             |
| 0x1304  | Information | Encoder       | Encoder initialization successfully, channel: %X                              | Encoder initialization successfully completed                                                                                                                            |
| 0x1305  | Information | Encoder       | Sent command encoder reset, channel: %X                                       | Send encoder reset command                                                                                                                                               |
| 0x1400  | Information | Drive         | Drive is calibrated: %d, %d                                                   | Drive is calibrated                                                                                                                                                      |
| 0x1401  | Information | Drive         | Actual drive state: 0x%X, %d                                                  | Current drive status                                                                                                                                                     |
| 0x1705  | Information |               | CPU usage returns in normal range (< 85%%)                                    | Processor load is back in the normal range                                                                                                                               |
| 0x1706  | Information |               | Channel is not in saturation anymore                                          | Channel is no longer in saturation                                                                                                                                       |
| 0x1707  | Information |               | Channel is not in overload anymore                                            | Channel is no longer overloaded                                                                                                                                          |
| 0x170A  | Information |               | No channel range error anymore                                                | A measuring range error is no longer active                                                                                                                              |
| 0x170C  | Information |               | Calibration data saved                                                        | Calibration data were saved                                                                                                                                              |
| 0x170D  | Information |               | Calibration data will be applied and saved after sending the command "0x5AFE" | Calibration data are not applied and saved until the command "0x5AFE" is sent.                                                                                           |



| Text ID | Туре        | Place  | Text Message                                                                     | Additional comment                                  |  |
|---------|-------------|--------|----------------------------------------------------------------------------------|-----------------------------------------------------|--|
| 0x2000  | Information | System | %s: %s                                                                           |                                                     |  |
| 0x2001  | Information | System | %s: Network link lost                                                            | Network connection lost                             |  |
| 0x2002  | Information | System | %s: Network link detected                                                        | Network connection found                            |  |
| 0x2003  | Information | System | %s: no valid IP Configuration - Dhcp client started                              | Invalid IP configuration                            |  |
| 0x2004  | Information | System | %s: valid IP Configuration (IP: %d.%d.%d.%d) assigned by Dhcp server %d.%d.%d.%d | Valid IP configuration, assigned by the DHCP server |  |
| 0x2005  | Information | System | %s: Dhcp client timed out                                                        | DHCP client timeout                                 |  |
| 0x2006  | Information | System | %s: Duplicate IP Address<br>detected (%d.%d.%d.%d)                               | Duplicate IP address found                          |  |
| 0x2007  | Information | System | %s: UDP handler initialized                                                      | UDP handler initialized                             |  |
| 0x2008  | Information | System | %s: TCP handler initialized                                                      | TCP handler initialized                             |  |
| 0x2009  | Information | System | %s: No more free TCP sockets available                                           | No free TCP sockets available.                      |  |



| Text ID | Туре    | Place   | Text Message                                                                                                                           | Additional comment                                                                                                                 |  |
|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x4000  | Warning |         | Warning: 0x%X, 0x%X, 0x%X                                                                                                              | General warning; parameters depend on event. See device documentation for interpretation.                                          |  |
| 0x4001  | Warning | System  | Warning: 0x%X, 0x%X, 0x%X                                                                                                              |                                                                                                                                    |  |
| 0x4002  | Warning | System  | %s: %s Connection Open (IN:%d OUT:%d API:%dms) from %d. %d.%d.%d successful                                                            |                                                                                                                                    |  |
| 0x4003  | Warning | System  | %s: %s Connection Close (IN:%d OUT:%d) from %d.%d.%d.%d successful                                                                     |                                                                                                                                    |  |
| 0x4004  | Warning | System  | %s: %s Connection (IN:%d OUT: %d) with %d.%d.%d.%d timed out                                                                           |                                                                                                                                    |  |
| 0x4005  | Warning | System  | %s: %s Connection Open (IN:%d<br>OUT:%d) from %d.%d.%d.%d<br>denied (Error: %u)                                                        |                                                                                                                                    |  |
| 0x4006  | Warning | System  | %s: %s Connection Open (IN:%d<br>OUT:%d) from %d.%d.%d.%d<br>denied (Input Data Size expected:<br>%d Byte(s) received: %d Byte(s))     |                                                                                                                                    |  |
| 0x4007  | Warning | System  | %s: %s Connection Open (IN:%d<br>OUT:%d) from %d.%d.%d.%d<br>denied (Output Data Size<br>expected: %d Byte(s) received:<br>%d Byte(s)) |                                                                                                                                    |  |
| 0x4008  | Warning | System  | %s: %s Connection Open (IN:%d OUT:%d) from %d.%d.%d.%d denied (RPI:%dms not supported -> API:%dms)                                     |                                                                                                                                    |  |
| 0x4101  | Warning | General | Terminal-Overtemperature                                                                                                               | Overtemperature. The internal temperature of the terminal exceeds the parameterized warning threshold.                             |  |
| 0x4102  | Warning | General | Discrepancy in the PDO-<br>Configuration                                                                                               | The selected PDOs do not match the set operating mode.                                                                             |  |
|         |         |         |                                                                                                                                        | Sample: Drive operates in velocity mode, but the velocity PDO is but not mapped in the PDOs.                                       |  |
| 0x417F  | Warning | General | Warning: 0x%X, 0x%X, 0x%X                                                                                                              |                                                                                                                                    |  |
| 0x428D  | Warning | General | Challenge is not Random                                                                                                                |                                                                                                                                    |  |
| 0x4300  | Warning | Encoder | Subincrements deactivated: %d, %d                                                                                                      | Sub-increments deactivated (despite activated configuration)                                                                       |  |
| 0x4301  | Warning | Encoder | Encoder-Warning                                                                                                                        | General encoder error                                                                                                              |  |
| 0x4302  | Warning | Encoder | Maximum frequency of the input signal is nearly reached (channel %d)                                                                   |                                                                                                                                    |  |
| 0x4303  | Warning | Encoder | Limit counter value was reduced<br>because of the PDO configuration<br>(channel %d)                                                    | 1                                                                                                                                  |  |
| 0x4304  | Warning | Encoder | Reset counter value was reduced<br>because of the PDO configuration<br>(channel %d)                                                    |                                                                                                                                    |  |
| 0x4400  | Warning | Drive   | Drive is not calibrated: %d, %d                                                                                                        | Drive is not calibrated                                                                                                            |  |
| 0x4401  | Warning | Drive   | Starttype not supported: 0x%X, %d                                                                                                      | Start type is not supported                                                                                                        |  |
| 0x4402  | Warning | Drive   | Command rejected: %d, %d                                                                                                               | Command rejected                                                                                                                   |  |
| 0x4405  | Warning | Drive   | Invalid modulo subtype: %d, %d                                                                                                         | Modulo sub-type invalid                                                                                                            |  |
| 0x4410  | Warning | Drive   | Target overrun: %d, %d                                                                                                                 | Target position exceeded                                                                                                           |  |
| 0x4411  | Warning | Drive   | DC-Link undervoltage (Warning)                                                                                                         | The DC link voltage of the terminal is lower than the parameterized minimum voltage. Activation of the output stage is prevented.  |  |
| 0x4412  | Warning | Drive   | DC-Link overvoltage (Warning)                                                                                                          | The DC link voltage of the terminal is higher than the parameterized maximum voltage. Activation of the output stage is prevented. |  |
| 0x4413  | Warning | Drive   | I2T-Model Amplifier overload (Warning)                                                                                                 | The amplifier is being operated outside the specification. The I2T-model of the amplifier is incorrectly                           |  |
|         |         |         |                                                                                                                                        | parameterized.                                                                                                                     |  |
| 0x4414  | Warning | Drive   | I2T-Model Motor overload (Warning)                                                                                                     | The motor is being operated outside the parameterized rated values.                                                                |  |



| Text ID | Туре    | Place      | Text Message                                                                     | Additional comment                                                                                                                                                                                      |  |
|---------|---------|------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         |         |            |                                                                                  | The I2T-model of the motor is incorrectly parameterized.                                                                                                                                                |  |
| 0x4415  | Warning | Drive      | Speed limitation active                                                          | The maximum speed is limited by the parameterized objects (e.g. velocity limitation, motor speed limitation) This warning is output if the set velocity is higher than one of the parameterized limits. |  |
| 0x4416  | Warning | Drive      | Step lost detected at position: 0x%X%X                                           | Step loss detected                                                                                                                                                                                      |  |
| 0x4417  | Warning | Drive      | Motor overtemperature                                                            | The internal temperature of the motor exceeds the parameterized warning threshold                                                                                                                       |  |
| 0x4418  | Warning | Drive      | Limit: Current                                                                   | Limit: current is limited                                                                                                                                                                               |  |
| 0x4419  | Warning | Drive      | Limit: Amplifier I2T-model exceeds 100%%                                         | The threshold values for the maximum current were exceeded.                                                                                                                                             |  |
| 0x441A  | Warning | Drive      | Limit: Motor I2T-model exceeds 100%%                                             | Limit: Motor I2T-model exceeds 100%                                                                                                                                                                     |  |
| 0x441B  | Warning | Drive      | Limit: Velocity limitation                                                       | The threshold values for the maximum speed were exceeded.                                                                                                                                               |  |
| 0x441C  | Warning | Drive      | STO while the axis was enabled                                                   | An attempt was made to activate the axis, despite the fact that no voltage is present at the STO input.                                                                                                 |  |
| 0x4600  | Warning | General IO | Wrong supply voltage range                                                       | Supply voltage not in the correct range                                                                                                                                                                 |  |
| 0x4610  | Warning | General IO | Wrong output voltage range                                                       | Output voltage not in the correct range                                                                                                                                                                 |  |
| 0x4705  | Warning |            | Processor usage at %d %%                                                         | Processor load at %d %%                                                                                                                                                                                 |  |
| 0x470A  | Warning |            | EtherCAT Frame missed (change Settings or DC Operation Mode or Sync0 Shift Time) | EtherCAT frame missed (change DC Operation Mode or Sync0 Shift Time under Settings)                                                                                                                     |  |



| Text ID                    | Туре           | Place                                     | Text Message                                                                                    | Additional comment                                                                                                                                                                                                  |  |
|----------------------------|----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x8000                     | Error          | System                                    | %s: %s                                                                                          |                                                                                                                                                                                                                     |  |
| 0x8001                     | Error          | System                                    | Error: 0x%X, 0x%X, 0x%X                                                                         | General error; parameters depend on event. See device documentation for interpretation.                                                                                                                             |  |
| 0x8002                     | Error          | System                                    | Communication aborted                                                                           | Communication aborted                                                                                                                                                                                               |  |
| 0x8003                     | Error          | System                                    | Configuration error: 0x%X, 0x%X,                                                                | General; parameters depend on event.                                                                                                                                                                                |  |
|                            |                |                                           | 0x%X                                                                                            | See device documentation for interpretation.                                                                                                                                                                        |  |
| 0x8004                     | Error          | System                                    | %s: Unsuccessful FwdOpen-<br>Response received from %d.%d.<br>%d.%d (%s) (Error: %u)            | •                                                                                                                                                                                                                   |  |
| 0x8005                     | Error          | System                                    | %s: FwdClose-Request sent to %d.%d.%d.%d (%s)                                                   |                                                                                                                                                                                                                     |  |
| 0x8006                     | Error          | System                                    | %s: Unsuccessful FwdClose-<br>Response received from %d.%d.<br>%d.%d (%s) (Error: %u)           |                                                                                                                                                                                                                     |  |
| 0x8007                     | Error          | System                                    | %s: Connection with %d.%d.%d. %d. %d (%s) closed                                                |                                                                                                                                                                                                                     |  |
| 0x8100                     | Error          | General                                   | Status word set: 0x%X, %d                                                                       | Error bit set in the status word                                                                                                                                                                                    |  |
| 0x8101                     | Error          | General                                   | Operation mode incompatible to PDO interface: 0x%X, %d                                          | Mode of operation incompatible with the PDO interface                                                                                                                                                               |  |
| 0x8102                     | Error          | General                                   | Invalid combination of Inputs and Outputs PDOs                                                  | Invalid combination of input and output PDOs                                                                                                                                                                        |  |
| 0x8103                     | Error          | General                                   | No variable linkage                                                                             | No variables linked                                                                                                                                                                                                 |  |
| 0x8104                     | Error          | General                                   | Terminal-Overtemperature                                                                        | The internal temperature of the terminal exceeds the parameterized error threshold. Activation of the terminal is prevented                                                                                         |  |
| 0x8105                     | Error          | General                                   | PD-Watchdog                                                                                     | Communication between the fieldbus and the output stage is secured by a Watchdog. The axis is stopped automatically if the fieldbus communication is interrupted.  • The EtherCAT connection was interrupted during |  |
|                            |                |                                           |                                                                                                 | operation.  The Master was switched to Config mode during operation.                                                                                                                                                |  |
| 0x8135                     | Error          | General                                   | Cycle time has to be a multiple of 125 µs                                                       | · ·                                                                                                                                                                                                                 |  |
| 0x8136                     | Error          | General                                   | Configuration error: invalid sampling rate                                                      | Configuration error: Invalid sampling rate                                                                                                                                                                          |  |
| 0x8137                     | Error          | General                                   | Electronic type plate: CRC error                                                                | Content of the external name plate memory invalid.                                                                                                                                                                  |  |
| 0x8140                     | Error          | General                                   | Sync Error                                                                                      | Real-time violation                                                                                                                                                                                                 |  |
| 0x8141                     | Error          | General                                   | Sync%X Interrupt lost                                                                           | Sync%X Interrupt lost                                                                                                                                                                                               |  |
| 0x8142                     | Error          | General                                   | Sync Interrupt asynchronous                                                                     | Sync Interrupt asynchronous                                                                                                                                                                                         |  |
| 0x8143                     | Error          | General                                   | Jitter too big                                                                                  | Jitter limit violation                                                                                                                                                                                              |  |
| 0x817F                     | Error          | General                                   | Error: 0x%X, 0x%X, 0x%X                                                                         |                                                                                                                                                                                                                     |  |
| 0x8200                     | Error          | Communication                             | Write access error: %d, %d                                                                      | Error while writing                                                                                                                                                                                                 |  |
| 0x8201                     | Error          | Communication                             | No communication to field-side (Auxiliary voltage missing)                                      | <ul><li>There is no voltage applied to the power contacts.</li><li>A firmware update has failed.</li></ul>                                                                                                          |  |
| 0x8281                     | Error          | Communication                             | Ownership failed: %X                                                                            | ·                                                                                                                                                                                                                   |  |
| 0x8282                     | Error          | Communication                             | To many Keys founded                                                                            |                                                                                                                                                                                                                     |  |
| 0x8283                     | Error          | Communication                             | Key Creation failed: %X                                                                         |                                                                                                                                                                                                                     |  |
| 0x8284                     | Error          | Communication                             | Key loading failed                                                                              |                                                                                                                                                                                                                     |  |
| 0x8285                     | Error          | Communication                             | Reading Public Key failed: %X                                                                   |                                                                                                                                                                                                                     |  |
| 0x8286                     | Error          | Communication                             | Reading Public EK failed: %X                                                                    |                                                                                                                                                                                                                     |  |
| 0x8287                     | Error          | Communication                             | Reading PCR Value failed: %X                                                                    |                                                                                                                                                                                                                     |  |
| 0x8288                     | Error          | Communication                             | Reading Certificate EK failed: %X                                                               |                                                                                                                                                                                                                     |  |
| 0x8289                     | Error          | Communication                             | Challenge could not be hashed: %X                                                               |                                                                                                                                                                                                                     |  |
| 0x828A                     | Error          | Communication                             | Tickstamp Process failed                                                                        |                                                                                                                                                                                                                     |  |
| 0x828B                     | Error          | Communication                             | PCR Process failed: %X                                                                          |                                                                                                                                                                                                                     |  |
| 0x828C                     | Error          | Communication                             | Quote Process failed: %X                                                                        |                                                                                                                                                                                                                     |  |
| 0x82FF                     | Error          | Communication                             | Bootmode not activated                                                                          | Boot mode not activated                                                                                                                                                                                             |  |
| 0x8300                     | Error          | Encoder                                   | Set position error: 0x%X, %d                                                                    |                                                                                                                                                                                                                     |  |
| 0x828B<br>0x828C<br>0x82FF | Error<br>Error | Communication Communication Communication | Tickstamp Process failed PCR Process failed: %X Quote Process failed: %X Bootmode not activated | Boot mode not activated Error while setting the position                                                                                                                                                            |  |



| Text ID | Туре  | Place   | Text Message                                                                      | Additional comment                                                                                                                                         |  |
|---------|-------|---------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x8301  | Error | Encoder | Encoder increments not configured: 0x%X, %d                                       | Encoder increments not configured                                                                                                                          |  |
| 0x8302  | Error | Encoder | Encoder error                                                                     | The amplitude of the resolver is too small                                                                                                                 |  |
| 0x8303  | Error | Encoder | Encoder power missing (channel %d)                                                |                                                                                                                                                            |  |
| 0x8304  | Error | Encoder | Encoder communication error, channel: %X                                          | Encoder communication error                                                                                                                                |  |
| 0x8305  | Error | Encoder | EnDat2.2 is not supported, channel: %X                                            | EnDat2.2 is not supported                                                                                                                                  |  |
| 0x8306  | Error | Encoder | Delay time, tolerance limit exceeded, 0x%X, channel: %X                           | Runtime measurement, tolerance exceeded                                                                                                                    |  |
| 0x8307  | Error | Encoder | Delay time, maximum value exceeded, 0x%X, channel: %X                             | Runtime measurement, maximum value exceeded                                                                                                                |  |
| 0x8308  | Error | Encoder | Unsupported ordering designation, 0x%X, channel: %X (only 02 and 22 is supported) | Wrong EnDat order ID                                                                                                                                       |  |
| 0x8309  | Error | Encoder | Encoder CRC error, channel: %X                                                    | Encoder CRC error                                                                                                                                          |  |
| 0x830A  | Error | Encoder | Temperature %X could not be read, channel: %X                                     | Temperature cannot be read                                                                                                                                 |  |
| 0x830C  | Error | Encoder | Encoder Single-Cycle-Data Error, channel. %X                                      | CRC error detected. Check the transmission path and the CRC polynomial                                                                                     |  |
| 0x830D  | Error | Encoder | Encoder Watchdog Error, channel. %X                                               | The sensor has not responded within a predefined time period                                                                                               |  |
| 0x8310  | Error | Encoder | Initialisation error                                                              |                                                                                                                                                            |  |
| 0x8311  | Error | Encoder | Maximum frequency of the input signal is exceeded (channel %d)                    |                                                                                                                                                            |  |
| 0x8312  | Error | Encoder | Encoder plausibility error (channel %d)                                           |                                                                                                                                                            |  |
| 0x8313  | Error | Encoder | Configuration error (channel %d)                                                  |                                                                                                                                                            |  |
| 0x8314  | Error | Encoder | Synchronisation error                                                             |                                                                                                                                                            |  |
| 0x8315  | Error | Encoder | Error status input (channel %d)                                                   |                                                                                                                                                            |  |
| 0x8400  | Error | Drive   | Incorrect drive configuration: 0x%X, %d                                           | Drive incorrectly configured                                                                                                                               |  |
| 0x8401  | Error | Drive   | Limiting of calibration velocity: %d, %d                                          | Limitation of the calibration velocity                                                                                                                     |  |
| 0x8402  | Error | Drive   | Emergency stop activated: 0x%X, %d                                                | Emergency stop activated                                                                                                                                   |  |
| 0x8403  | Error | Drive   | ADC Error                                                                         | Error during current measurement in the ADC                                                                                                                |  |
| 0x8404  | Error | Drive   | Overcurrent                                                                       | Overcurrent in phase U, V or W                                                                                                                             |  |
| 0x8405  | Error | Drive   | Invalid modulo position: %d                                                       | Modulo position invalid                                                                                                                                    |  |
| 0x8406  | Error | Drive   | DC-Link undervoltage (Error)                                                      | The DC link voltage of the terminal is lower than the parameterized minimum voltage. Activation of the output stage is prevented.                          |  |
| 0x8407  | Error | Drive   | DC-Link overvoltage (Error)                                                       | The DC link voltage of the terminal is higher than the parameterized maximum voltage. Activation of the output stage is prevented.                         |  |
| 0x8408  | Error | Drive   | I2T-Model Amplifier overload (Error)                                              | The amplifier is being operated outside the specification.                                                                                                 |  |
| 00400   |       | Detro   | IOT Madal master availand (Finan)                                                 | The I2T-model of the amplifier is incorrectly parameterized.                                                                                               |  |
| 0x8409  | Error | Drive   | I2T-Model motor overload (Error)                                                  | The motor is being operated outside the parameterized rated values.                                                                                        |  |
|         |       |         |                                                                                   | The I2T-model of the motor is incorrectly parameterized.                                                                                                   |  |
| 0x840A  | Error | Drive   | Overall current threshold exceeded                                                | Total current exceeded                                                                                                                                     |  |
| 0x8415  | Error | Drive   | Invalid modulo factor: %d                                                         | Modulo factor invalid                                                                                                                                      |  |
| 0x8416  | Error | Drive   | Motor overtemperature                                                             | The internal temperature of the motor exceeds the parameterized error threshold. The motor stops immediately. Activation of the output stage is prevented. |  |
| 0x8417  | Error | Drive   | Maximum rotating field velocity exceeded                                          | Rotary field speed exceeds the value specified for dual use (EU 1382/2014).                                                                                |  |
| 0x841C  | Error | Drive   | STO while the axis was enabled                                                    | An attempt was made to activate the axis, despite the fact that no voltage is present at the STO input.                                                    |  |



| Text ID | Туре        | Place      | Text Message                         | Additional comment                      |  |
|---------|-------------|------------|--------------------------------------|-----------------------------------------|--|
| 0x8550  | Error       | Inputs     | Zero crossing phase %X missing       | Zero crossing phase %X missing          |  |
| 0x8551  | Error       | Inputs     | Phase sequence Error                 | Wrong direction of rotation             |  |
| 0x8552  | Error       | Inputs     | Overcurrent phase %X                 | Overcurrent phase %X                    |  |
| 0x8553  | Error       | Inputs     | Overcurrent neutral wire             | Overcurrent neutral wire                |  |
| 0x8581  | Error       | Inputs     | Wire broken Ch %D                    | Wire broken Ch %d                       |  |
| 0x8600  | Error       | General IO | Wrong supply voltage range           | Supply voltage not in the correct range |  |
| 0x8601  | Error       | General IO | Supply voltage to low                | Supply voltage too low                  |  |
| 0x8602  | Error       | General IO | Supply voltage to high               | Supply voltage too high                 |  |
| 0x8603  | Error       | General IO | Over current of supply voltage       | Overcurrent of supply voltage           |  |
| 0x8610  | Error       | General IO | Wrong output voltage range           | Output voltage not in the correct range |  |
| 0x8611  | Error       | General IO | Output voltage to low                | Output voltage too low                  |  |
| 0x8612  | Error       | General IO | Output voltage to high               | Output voltage too high                 |  |
| 0x8613  | Error       | General IO | Over current of output voltage       | Overcurrent of output voltage           |  |
| 0x8700  | Error       |            | Channel/Interface not calibrated     | Channel/interface not synchronized      |  |
| 0x8701  | Error       |            | Operating time was manipulated       | Operating time was manipulated          |  |
| 0x8702  | Error       |            | Oversampling setting is not possible | Oversampling setting not possible       |  |
| 0x8703  | Error       |            | No slave controller found            | No slave controller found               |  |
| 0x8704  | Error       |            | Slave controller is not in Bootstrap | Slave controller is not in bootstrap    |  |
| 0x8705  | Error       |            | Processor usage to high (>= 100%%)   | Processor load too high (>= 100%%)      |  |
| 0x8706  | Error       |            | Channel in saturation                | Channel in saturation                   |  |
| 0x8707  | Error       |            | Channel overload                     | Channel overload                        |  |
| 0x8708  | Error       |            | Overloadtime was manipulated         | Overload time was manipulated           |  |
| 0x8709  | Error       |            | Saturationtime was manipulated       | Saturation time was manipulated         |  |
| 0x870A  | Error       |            | Channel range error                  | Measuring range error for the channel   |  |
| 0x870B  | Error       |            | no ADC clock                         | No ADC clock available                  |  |
| 0xFFFF  | Information |            | Debug: 0x%X, 0x%X, 0x%X              | Debug: 0x%X, 0x%X, 0x%X                 |  |



# 8 Appendix

# 8.1 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

#### Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages: <a href="www.beckhoff.com">www.beckhoff.com</a>

You will also find further documentation for Beckhoff components there.

#### **Support**

The Beckhoff Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- · support
- · design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
e-mail: support@beckhoff.com
web: www.beckhoff.com/support

#### Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- · repair service
- · spare parts service
- · hotline service

Hotline: +49 5246 963 460
e-mail: service@beckhoff.com
web: www.beckhoff.com/service

### **Headquarters Germany**

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 20 33415 Verl Germany

Phone: +49 5246 963 0
e-mail: info@beckhoff.com
web: www.beckhoff.com

More Information: www.beckhoff.com/EJ5042-0010

Beckhoff Automation GmbH & Co. KG Hülshorstweg 20 33415 Verl Germany Phone: +49 5246 9630 info@beckhoff.com www.beckhoff.com

